Citation: YU Weng-Ting,  LUO Ming-Biao. Characteristics and Mechanism Study of Arsenic Adsorption on Composite Material of Zr-based Metal Organic Framework and Fe2O3[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 1003-1012. doi: 10.19756/j.issn.0253-3820.221186 shu

Characteristics and Mechanism Study of Arsenic Adsorption on Composite Material of Zr-based Metal Organic Framework and Fe2O3

  • Corresponding author: YU Weng-Ting, wtyu@cugb.edu.cn
  • Received Date: 8 April 2022
    Revised Date: 9 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21761001).

  • UiO-66(OH)@Fe2O3 synthesized by hydrothermal method was used for adsorption of As(Ⅲ) and As(V). results showed that the optimal pH value for As (Ⅲ) removal by UiO-66(OH)@Fe2O3 was pH=11, the equilibrium adsorption time was 180 min, and the maximum adsorption amount was 140.0 mg/g. At this time, the main form of As(Ⅲ) removal was H2AsO3-. Meanwhile, the optimal pH value for As(V) removal by UiO-66(OH)@Fe2O3 was pH=9, the equilibrium adsorption time was 90 min, and the maximum adsorption amount was 260.0 mg/g. At this pH value, the main form of As(V) removal was HAsO42-. The adsorption kinetics, thermodynamic, co-existing ions and repeatability of UiO-66(OH)@Fe2O3 were also investigated. It was shown that the adsorption fitted well with pseudo second-order kinetic model and Langmuir isotherm, and the ΔG° was less than zero under different temperatures, indicating that the entire adsorption process belongs to spontaneous monolayer chemical adsorption. Except PO43-, other co-existing ions had little effects on adsorption. The adsorbed material was eluted with 0.25 mol/L Na2SO4. Through five times of adsorption and desorption experiments, it was shown that the removal rate of As(Ⅲ) and As(V) were more than 60% and 80%, respectively. The characterization results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) showed that the adsorption of arsenic by this adsorbent was mainly a chemical process, including the formation of Zr—O—As and the co-precipitation of ferric hydroxide produced by Fe2O3 hydrolysis. The prepared UiO-66(OH)@Fe2O3 had good adsorption activity for removing arsenic in different forms, and provided a theoretical reference for the development of composite materials with zirconium-based frame materials as the basic materials.
  • 加载中
    1. [1]

      ZOU S W, KOH K Y, CHEN Z, WANG Y Y, CHEN J P, ZHENG Y M. Chemosphere, 2022, 288(3):132634.

    2. [2]

      GIRI D D, JHA J M, SRIVASTAVA N, HASHEM A, ABD ALLAH E F, SHAH M, PAL D B. Chemosphere, 2022, 287(3):132308.

    3. [3]

      CAMEIRO M A, PINTOR A M A, BOAVENTURA R A R, BOTELHO C M S. J. Hazard. Mater., 2022, 432:128657.

    4. [4]

      PI K, XIE X, MA T, SU C, LI J, WANG Y. Water Res., 2020, 181:115859.

    5. [5]

      ALKA S, SHAHIR S, IBRAHIM N, NDEJIKO M J, VO D V N, ABD MANAN F. J. Cleaner Prod., 2021, 278:123805.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

      GHOSAL P S, KATTIL K V, YADAV M K, GUPTA A K. J. Environ. Manage., 2018, 209:176-187.

    15. [15]

      AREDES S, KLEIN B, PAWLIK M. J. Cleaner Prod., 2013, 60:71-76.

    16. [16]

      SIDDIQUI S I, CHAUDHRY S A. Process Saf. Environ. Protection, 2017, 111:592-626.

    17. [17]

    18. [18]

    19. [19]

      YAN C S, GAO H Y, LE GONG L, MA L F, DANG L L, ZHANG L, MENG P P, LUO F. J. Mater. Chem. A, 2016, 4(35):13603-13610.

    20. [20]

    21. [21]

      SINGH N, SRIVASTAVA I, DWIVEDI J, SANKARARAMAKRISHNAN N. Chemosphere, 2021, 270:129490.

    22. [22]

    23. [23]

    24. [24]

      PENG Y, HUANG H, ZHANG Y, KANG C, CHEN S, SONG L, LIU D, ZHONG C. Nat. Commun., 2018, 9(1):187-195.

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      KIM M, CAHILL J F, SU Y, PRATHER K A, COHEN S M. Chem. Sci., 2012, 3(1):126-130.

    29. [29]

      HU Q, LIU Y, GU X, ZHAO Y. Chemosphere, 2017, 181:328-336.

    30. [30]

      LEE S Y, CHANG B, KIM Y J, JANG H, LEE Y J. J. Colloid Interface Sci., 2022, 613:499-514.

    31. [31]

      NGUYEN T T Q, LOGANATHAN P, NGUYEN T V, VIGNESWARAN S. Environ. Sci. Pollut. Res., 2020, 27(5):5490- 5502.

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

      WU L K, WU H, ZHANG H B, CAO H Z, HOU G Y, TANG Y P, ZHENG G Q. Chem. Eng. J., 2018, 334:1808-1819.

    39. [39]

      LIU T, ZHANG Z, WANG Z, WANG Z L, BUSH R. RSC Adv., 2019, 9(67):39475-39487.

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    9. [9]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    14. [14]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    15. [15]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    18. [18]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(10)
  • Abstract views(1036)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return