Citation: CHEN Ying,  MEI Rong-Chao,  WANG Yun-Qing,  LIU Wan-Hui,  CHEN Ling-Xin. Detection of Single Cell Intracellular Environment by Surface Enhanced Raman Scattering Nanotip[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 356-363. doi: 10.19756/j.issn.0253-3820.221167 shu

Detection of Single Cell Intracellular Environment by Surface Enhanced Raman Scattering Nanotip

  • Corresponding author: WANG Yun-Qing,  CHEN Ling-Xin, 
  • Received Date: 6 April 2022
    Revised Date: 13 October 2022

    Fund Project: Supported by the National Natural Foundation of China (Nos. 42076199, 21976209).

  • Surface-enhanced Raman scattering (SERS) nanotip is a kind of new technique for single cell analysis, which shows excellent application potential in detection of intracellular environment and study of cell physiological function. Due to the small number of noble metal particles that can be loaded on SERS nanotips, screening and modifying nanoparticles with high SERS enhancement ability is the key to ensure their detection sensitivity. In this study, core-satellite Au nanoparticles were prepared, and the single particle signal was significantly higher than that of traditional Au nanospheres and Au nanostars. The particle was coated on the surface of glass capillary with tip diameter of about 200 nm to form SERS nanotips, which further functionalized and modified with target-sensitive Raman reporter molecules, enabling them to detect pH value and O2 content in micro-area environment. As application performance investigation, SERS nanotips realized pH value and anoxic state monitoring in single HL-7702 cell. This study solved the bottleneck issues such as random aggregation and difficulty in precise localization faced by traditional granular SERS probes for cell analysis, providing a new analytical tool for detection and analysis of single cell environment.
  • 加载中
    1. [1]

      KELLER L, PANTEL K. Nat. Rev. Cancer, 2019, 19(10):553-567.

    2. [2]

      ARABI M, OSTOVAN A, ZHANG Z, WANG Y, MEI R, FU L, WANG X, MA J, CHEN L. Biosens. Bioelectron., 2021, 174:112825.

    3. [3]

      GONG T, CUI Y, GOH D, VOON K K, SHUM P P, HUMBERT G, AUGUSTE J L, DINH X Q, YONG K T, OLIVO M. Biosens. Bioelectron., 2015, 64:227-233.

    4. [4]

    5. [5]

      CUI J, HU K, SUN J J, QU L L, LI D W. Biosens. Bioelectron., 2016, 85:324-330.

    6. [6]

      MEI R, WANG Y, YU Q, YIN Y, ZHAO R, CHEN L. ACS Appl. Mater. Interfaces, 2020, 12(2):2059-2066.

    7. [7]

      GUO J, HE J. Biophys. J., 2019, 116(3):146A.

    8. [8]

      HANIF S, LIU H L, AHMED S A, YANG J M, ZHOU Y, PANG J, JI L N, XIA X H, WANG K. Anal. Chem., 2017, 89(18):9911-9917.

    9. [9]

      ZHU D, LI A, DI Y, WANG Z, SHI J, NI X, WANG Y. Nanotechnology, 2022, 33(11):115702.

    10. [10]

      GUO J, RUBFIARO A S, LAI Y H, MOSCOSO J, CHEN F, LIU Y, WANG X W, HE J. Analyst, 2020145(14):4852-4859.

    11. [11]

      WANG J Q, GENG Y J, SHEN Y T, SHI W, XU W Q, XU S P. Sens. Actuators, B, 2019, 290:527-534.

    12. [12]

      HANIF S, LIU H, CHEN M, MUHAMMAD P, ZHOU Y, CAO J, AHMED S A, XU J, XIA X, CHEN H, WANG K. Anal. Chem., 2017, 89(4):2522-2530.

    13. [13]

      CHEN J, WANG J, GENG Y, YUE J, SHI W, LIANG C, XU W, XU S. ACS Sens., 2021, 6(4):1663-1670.

    14. [14]

      LUSSIER F, BRULÉ T, VISHWAKARMA M, DAS T, SPATZ J P, MASSON J F. Nano Lett., 2016, 16(6):3866-3871.

    15. [15]

      ZHAO X, CAMPBELL S, EL-KHOURY P Z, JIA Y, WALLACE G Q, CLAING A, BAZUIN C G, MASSON J F. ACS Sens., 2021, 6(4):1649-1662.

    16. [16]

      LIU J, HE H, XIE D, WEN Y, LIU Z. Nat. Protoc., 2021, 16(7):3522-3546.

    17. [17]

      ZHAO X, CAMPBELL S, WALLACE G Q, CLAING A, BAZUIN C G, MASSON J F. ACS Sens., 2020, 5(7):2155-2167.

    18. [18]

      ZHENG Y, ZHONG X, LI Z, XIA Y. Part. Part. Syst. Charact., 2014, 31(2):266-273.

    19. [19]

      MEI R, WANG Y, LIU W, CHEN L. ACS Appl. Mater. Interfaces, 2018, 10(28):23605-23616.

    20. [20]

      SANCHIS-GUAL R, TORRES-CAVANILLAS R, CORONADO-PUCHAU M, GIMÉNEZ-MARQUÉS M, CORONADO E. J. Mater. Chem. C, 2021, 9(33):10811-10818.

    21. [21]

      VITOL E A, ORYNBAYEVA Z, BOUCHARD M J, AZIZKHAN-CLIFFORD J, FRIEDMAN G, GOGOTSI Y. ACS Nano, 2009, 3(11):3529-3536.

    22. [22]

      NGUYEN T D, SONG M S, LY N H, LEE S Y, JOO S W. Angew. Chem. Int. Ed., 2019, 58(9):2710-2714.

    23. [23]

      ZHU H, MASSON J F, BAZUIN C G. ACS Appl. Nano Mater., 2020, 3(1):516-529.

    24. [24]

      KOYUNCU I, TEMIZ E, DURGUN M, KOCYIGIT A, YUKSEKDAG O, SUPURAN C T. Int. J. Biol. Macromol., 2022, 201:37-46.

    25. [25]

      YU S, YOON J, LEE J, MYUNG S, JANG E, KWAK M, CHO E, JANG J, KIM Y, LEE H. Acta Pharmacol. Sin., 2011, 32(7):912-920.

    26. [26]

      HUANG Y F, ZHU H P, LIU G K, WU D Y, REN B, TIAN Z Q. J. Am. Chem. Soc., 2010, 132(27):9244-9246.

    27. [27]

      ZHOU J, FANG C, CHANG T, LIU X, SHANGGUAN D. J. Mater. Chem. B, 2013, 1(5):661-667.

  • 加载中
    1. [1]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    6. [6]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    7. [7]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    8. [8]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    9. [9]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    10. [10]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    13. [13]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    14. [14]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    15. [15]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    16. [16]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    17. [17]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    18. [18]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    19. [19]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(17)
  • Abstract views(1962)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return