Citation: CHEN Xiang-Yu,  CAI Zhao-Qing,  PAN Yu-Bai,  WANG Zheng. Solution Cathode Glow Discharge Atomic Emission Spectrometry in Hydrogen-Helium Atmosphere for On-line Determination of Chromium in Sewage[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1252-1259. doi: 10.19756/j.issn.0253-3820.221145 shu

Solution Cathode Glow Discharge Atomic Emission Spectrometry in Hydrogen-Helium Atmosphere for On-line Determination of Chromium in Sewage

  • Corresponding author: WANG Zheng, wangzheng@mail.sic.ac.cn
  • Received Date: 23 March 2022
    Revised Date: 27 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.E27GJ616), the Instrument Development Project of the Chinese Academy of Sciences (No.YZ201539) and the Shanghai Technical Platform for Testing and Characterization on Inorganic Materials (No.19DZ2290700).

  • Solution cathode glow discharge atomic emission spectrometry (SCGD-AES) has many advantages such as low power consumption, small size and simple operation. It is an ideal choice for on-line analysis of field samples. However, the low power consumption leads torelatively limited excitation capacity, which limits the detection performance of high excitation potential elements, such as chromium. In this study, a method for determination of chromium (Cr) content in sewage by solution cathode glow discharge atomic emission spectrometry operated in hydrogen-helium mixed atmosphere was established. It was found that the excitation conditions of SCGD-AES could be improved in hydrogen-helium mixed atmosphere (H2 content of 3%). The experimental parameters such as gas flow rate, electrolyte type and flow rate, discharge voltage and spacing were optimized. The results showed that the limit of detection (LOD) of Cr was improved from 650 μg/L (discharging in air) to 106 μg/L with great repeatability (RSD=1.3%, 10 mg/L, n=11). The determination results of Cr in brown rice flour reference material (GBW(E)100619) and actual industrial sewage by this method were consistent with those obtained by inductively coupled plasma-optical emission spectroscopy (ICP-OES)and the recoveries were 92.4%-104.0%, indicating that this method had superb application prospect in determination of Cr in water samples.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      RATHI B S, KUMAR P S, VO D V N. Sci. Total Environ., 2021, 797:149134.

    4. [4]

      BERRYMAN E J, PAKTUNC D. J. Hazard. Mater., 2022, 422:126873.

    5. [5]

      NOVAK M, MARTINKOVA E, CHRASTNY V, STEPANOVA M, SEBEK O, ANDRONIKOV A, CURIK J, VESELOVSKY F, PRECHOVA E, HOUSKOVA M, BUZEK F, FARKAS J, KOMAREK A. Catena, 2017, 158:371-380.

    6. [6]

      DAS P K, DAS B P, DASH P. Environ. Chem. Lett., 2021, 19(2):1369-1381.

    7. [7]

      DAYAN A D, PAINE A J. Hum. Exp. Toxicol, 2001, 20(9):439-451.

    8. [8]

      SUN H, BROCATO J, COSTA M. Curr. Environ. Health Rep., 2015, 2(3):295-303.

    9. [9]

      BUTERS J, BIEDERMANN T. J. Invest. Dermatol., 2017, 137(2):274-277.

    10. [10]

      GARCIA M, AGUIRRE M A, CANALS A. J. Anal. At. Spectrom., 2020, 35(2):265-272.

    11. [11]

      MASONE J, BRENNAN R, RUSSELL G, HETTIPATHIRANA T. Spectroscopy, 2020, 35(9):48-49.

    12. [12]

      ZHU Q Y, ZHAO L Y, SHENG D, CHEN Y J, HU X, LIAN H Z, MAO L, CUI X B. Talanta, 2019, 195:173-180.

    13. [13]

    14. [14]

      LIU Y C, ZOU J, LUO B, YU H R, ZHAO Z G, XIA H. Microchem. J., 2021, 169:106547.

    15. [15]

      JIANG X M, CHEN Y, ZHENG C B, HOU X D. Anal. Chem., 2014, 86(11):5220-5224.

    16. [16]

      MENG F Y, YUAN X, LI X M, LIU Y, DUAN Y X. Appl. Spectrosc. Rev., 2014, 49(7):533-549.

    17. [17]

    18. [18]

    19. [19]

      WILLIAMS C B, AMAIS R S, FONTOURA B M, JONES B T, NOBREGA J A, DONATI G L. TrAC, Trends Anal. Chem., 2019, 116:151-157.

    20. [20]

      YANG C, HE D, ZHU Z L, PENG H, LIU Z F, WEN G J, BAI J H, ZHENG H T, HU S H, WANG Y X. Anal. Chem., 2017, 89(6):3694-3701.

    21. [21]

      NIU G H, KNODEL A, BURHENN S, BRANDT S, FRANZKE J. Anal. Chim. Acta, 2021, 1147:211-239.

    22. [22]

      WEBB M R, ANDRADE F J, HIEFTJE G M. Anal. Chem., 2007, 79(20):7899-7905.

    23. [23]

      WEBB M R, ANDRADE F J, HIEFTJE G M. Anal. Chem., 2007, 79(20):7807-7812.

    24. [24]

      GREDA K, JAMROZ P, POHL P. J. Anal. At. Spectrom., 2013, 28(8):1233-1241.

    25. [25]

      YU J, YANG S X, SUN D X, LU Q F, ZHENG J D, ZHANG X M, WANG X. Microchem. J., 2016, 128:325-330.

    26. [26]

      ZU W C, WANG Y, YANG X T, LIU C. Talanta, 2017, 173:88-93.

    27. [27]

      ZHENG P C, LUO Y J, WANG J M, HU Q, YANG Y, MAO X F, LAI C H. J. Anal. At. Spectrom., 2021, 36(6):1228-1234.

    28. [28]

      ZHAO M Y, PENG X X, YANG B C, WANG Z. J. Anal. At. Spectrom., 2020, 35(6):1148-1155.

    29. [29]

    30. [30]

      CHENG J Q, LI Q, ZHAO M Y, WANG Z. Anal. Chim. Acta, 2019, 1077:107-115.

    31. [31]

      GREDA K, JAMROZ P, DZIMITROWICZ A, POHL P. J. Anal. At. Spectrom., 2015, 30(1):154-161.

    32. [32]

      GREDA K, POHL P. Food Chem., 2022, 371:131178.

    33. [33]

      PENG X X, GUO X H, GE F, WANG Z. J. Anal. At. Spectrom., 2019, 34(2):394-400.

    34. [34]

      WANG Z, SCHWARTZ A J, RAY S J, HIEFTJE G M. J. Anal. At. Spectrom., 2013, 28(2):234-240.

    35. [35]

      WANG Z, GAI R Y, ZHOU L, ZHANG Z. J. Anal. At. Spectrom., 2014, 29(11):2042-2049.

    36. [36]

      GREDA K, SWIDERSKI K, JAMROZ P, POHL P. Microchem. J., 2017, 130:7-13.

    37. [37]

      MEZEI P, CSERFALVI T, KIM H J, MOTTALEB M A. Analyst, 2001, 126(5):712-714.

    38. [38]

      MANJUSHA R, REDDY M A, SHEKHAR R, JAIKUMAR S. J. Anal. At. Spectrom., 2013, 28(12):1932-1939.

    39. [39]

      GREDA K, JAMROZ P, POHL P. Talanta, 2013, 108:74-82.

    40. [40]

      GREDA K, JAMROZ P, POHL P. J. Anal. At. Spectrom., 2013, 28(8):1233-1241.

    41. [41]

      GORSKA M, POHL P. Talanta, 2021, 226:12155.

    42. [42]

      YANG C, CHENG G, CHENG S Q, LIU X, LIU Y, ZHENG H T, HU S H, ZHU Z L. Anal. Chem., 2021, 93(49):16393-16400.

  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    8. [8]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    12. [12]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    13. [13]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    14. [14]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    16. [16]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    17. [17]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    18. [18]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    19. [19]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    20. [20]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

Metrics
  • PDF Downloads(9)
  • Abstract views(430)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return