Citation: CHEN Xiang-Yu,  CAI Zhao-Qing,  PAN Yu-Bai,  WANG Zheng. Solution Cathode Glow Discharge Atomic Emission Spectrometry in Hydrogen-Helium Atmosphere for On-line Determination of Chromium in Sewage[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1252-1259. doi: 10.19756/j.issn.0253-3820.221145 shu

Solution Cathode Glow Discharge Atomic Emission Spectrometry in Hydrogen-Helium Atmosphere for On-line Determination of Chromium in Sewage

  • Corresponding author: WANG Zheng, wangzheng@mail.sic.ac.cn
  • Received Date: 23 March 2022
    Revised Date: 27 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.E27GJ616), the Instrument Development Project of the Chinese Academy of Sciences (No.YZ201539) and the Shanghai Technical Platform for Testing and Characterization on Inorganic Materials (No.19DZ2290700).

  • Solution cathode glow discharge atomic emission spectrometry (SCGD-AES) has many advantages such as low power consumption, small size and simple operation. It is an ideal choice for on-line analysis of field samples. However, the low power consumption leads torelatively limited excitation capacity, which limits the detection performance of high excitation potential elements, such as chromium. In this study, a method for determination of chromium (Cr) content in sewage by solution cathode glow discharge atomic emission spectrometry operated in hydrogen-helium mixed atmosphere was established. It was found that the excitation conditions of SCGD-AES could be improved in hydrogen-helium mixed atmosphere (H2 content of 3%). The experimental parameters such as gas flow rate, electrolyte type and flow rate, discharge voltage and spacing were optimized. The results showed that the limit of detection (LOD) of Cr was improved from 650 μg/L (discharging in air) to 106 μg/L with great repeatability (RSD=1.3%, 10 mg/L, n=11). The determination results of Cr in brown rice flour reference material (GBW(E)100619) and actual industrial sewage by this method were consistent with those obtained by inductively coupled plasma-optical emission spectroscopy (ICP-OES)and the recoveries were 92.4%-104.0%, indicating that this method had superb application prospect in determination of Cr in water samples.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      RATHI B S, KUMAR P S, VO D V N. Sci. Total Environ., 2021, 797:149134.

    4. [4]

      BERRYMAN E J, PAKTUNC D. J. Hazard. Mater., 2022, 422:126873.

    5. [5]

      NOVAK M, MARTINKOVA E, CHRASTNY V, STEPANOVA M, SEBEK O, ANDRONIKOV A, CURIK J, VESELOVSKY F, PRECHOVA E, HOUSKOVA M, BUZEK F, FARKAS J, KOMAREK A. Catena, 2017, 158:371-380.

    6. [6]

      DAS P K, DAS B P, DASH P. Environ. Chem. Lett., 2021, 19(2):1369-1381.

    7. [7]

      DAYAN A D, PAINE A J. Hum. Exp. Toxicol, 2001, 20(9):439-451.

    8. [8]

      SUN H, BROCATO J, COSTA M. Curr. Environ. Health Rep., 2015, 2(3):295-303.

    9. [9]

      BUTERS J, BIEDERMANN T. J. Invest. Dermatol., 2017, 137(2):274-277.

    10. [10]

      GARCIA M, AGUIRRE M A, CANALS A. J. Anal. At. Spectrom., 2020, 35(2):265-272.

    11. [11]

      MASONE J, BRENNAN R, RUSSELL G, HETTIPATHIRANA T. Spectroscopy, 2020, 35(9):48-49.

    12. [12]

      ZHU Q Y, ZHAO L Y, SHENG D, CHEN Y J, HU X, LIAN H Z, MAO L, CUI X B. Talanta, 2019, 195:173-180.

    13. [13]

    14. [14]

      LIU Y C, ZOU J, LUO B, YU H R, ZHAO Z G, XIA H. Microchem. J., 2021, 169:106547.

    15. [15]

      JIANG X M, CHEN Y, ZHENG C B, HOU X D. Anal. Chem., 2014, 86(11):5220-5224.

    16. [16]

      MENG F Y, YUAN X, LI X M, LIU Y, DUAN Y X. Appl. Spectrosc. Rev., 2014, 49(7):533-549.

    17. [17]

    18. [18]

    19. [19]

      WILLIAMS C B, AMAIS R S, FONTOURA B M, JONES B T, NOBREGA J A, DONATI G L. TrAC, Trends Anal. Chem., 2019, 116:151-157.

    20. [20]

      YANG C, HE D, ZHU Z L, PENG H, LIU Z F, WEN G J, BAI J H, ZHENG H T, HU S H, WANG Y X. Anal. Chem., 2017, 89(6):3694-3701.

    21. [21]

      NIU G H, KNODEL A, BURHENN S, BRANDT S, FRANZKE J. Anal. Chim. Acta, 2021, 1147:211-239.

    22. [22]

      WEBB M R, ANDRADE F J, HIEFTJE G M. Anal. Chem., 2007, 79(20):7899-7905.

    23. [23]

      WEBB M R, ANDRADE F J, HIEFTJE G M. Anal. Chem., 2007, 79(20):7807-7812.

    24. [24]

      GREDA K, JAMROZ P, POHL P. J. Anal. At. Spectrom., 2013, 28(8):1233-1241.

    25. [25]

      YU J, YANG S X, SUN D X, LU Q F, ZHENG J D, ZHANG X M, WANG X. Microchem. J., 2016, 128:325-330.

    26. [26]

      ZU W C, WANG Y, YANG X T, LIU C. Talanta, 2017, 173:88-93.

    27. [27]

      ZHENG P C, LUO Y J, WANG J M, HU Q, YANG Y, MAO X F, LAI C H. J. Anal. At. Spectrom., 2021, 36(6):1228-1234.

    28. [28]

      ZHAO M Y, PENG X X, YANG B C, WANG Z. J. Anal. At. Spectrom., 2020, 35(6):1148-1155.

    29. [29]

    30. [30]

      CHENG J Q, LI Q, ZHAO M Y, WANG Z. Anal. Chim. Acta, 2019, 1077:107-115.

    31. [31]

      GREDA K, JAMROZ P, DZIMITROWICZ A, POHL P. J. Anal. At. Spectrom., 2015, 30(1):154-161.

    32. [32]

      GREDA K, POHL P. Food Chem., 2022, 371:131178.

    33. [33]

      PENG X X, GUO X H, GE F, WANG Z. J. Anal. At. Spectrom., 2019, 34(2):394-400.

    34. [34]

      WANG Z, SCHWARTZ A J, RAY S J, HIEFTJE G M. J. Anal. At. Spectrom., 2013, 28(2):234-240.

    35. [35]

      WANG Z, GAI R Y, ZHOU L, ZHANG Z. J. Anal. At. Spectrom., 2014, 29(11):2042-2049.

    36. [36]

      GREDA K, SWIDERSKI K, JAMROZ P, POHL P. Microchem. J., 2017, 130:7-13.

    37. [37]

      MEZEI P, CSERFALVI T, KIM H J, MOTTALEB M A. Analyst, 2001, 126(5):712-714.

    38. [38]

      MANJUSHA R, REDDY M A, SHEKHAR R, JAIKUMAR S. J. Anal. At. Spectrom., 2013, 28(12):1932-1939.

    39. [39]

      GREDA K, JAMROZ P, POHL P. Talanta, 2013, 108:74-82.

    40. [40]

      GREDA K, JAMROZ P, POHL P. J. Anal. At. Spectrom., 2013, 28(8):1233-1241.

    41. [41]

      GORSKA M, POHL P. Talanta, 2021, 226:12155.

    42. [42]

      YANG C, CHENG G, CHENG S Q, LIU X, LIU Y, ZHENG H T, HU S H, ZHU Z L. Anal. Chem., 2021, 93(49):16393-16400.

  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    9. [9]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    10. [10]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    11. [11]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    12. [12]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    13. [13]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    16. [16]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    17. [17]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    18. [18]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    19. [19]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    20. [20]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

Metrics
  • PDF Downloads(9)
  • Abstract views(412)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return