Citation: CHEN Xiang-Yu,  CAI Zhao-Qing,  PAN Yu-Bai,  WANG Zheng. Solution Cathode Glow Discharge Atomic Emission Spectrometry in Hydrogen-Helium Atmosphere for On-line Determination of Chromium in Sewage[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1252-1259. doi: 10.19756/j.issn.0253-3820.221145 shu

Solution Cathode Glow Discharge Atomic Emission Spectrometry in Hydrogen-Helium Atmosphere for On-line Determination of Chromium in Sewage

  • Corresponding author: WANG Zheng, wangzheng@mail.sic.ac.cn
  • Received Date: 23 March 2022
    Revised Date: 27 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.E27GJ616), the Instrument Development Project of the Chinese Academy of Sciences (No.YZ201539) and the Shanghai Technical Platform for Testing and Characterization on Inorganic Materials (No.19DZ2290700).

  • Solution cathode glow discharge atomic emission spectrometry (SCGD-AES) has many advantages such as low power consumption, small size and simple operation. It is an ideal choice for on-line analysis of field samples. However, the low power consumption leads torelatively limited excitation capacity, which limits the detection performance of high excitation potential elements, such as chromium. In this study, a method for determination of chromium (Cr) content in sewage by solution cathode glow discharge atomic emission spectrometry operated in hydrogen-helium mixed atmosphere was established. It was found that the excitation conditions of SCGD-AES could be improved in hydrogen-helium mixed atmosphere (H2 content of 3%). The experimental parameters such as gas flow rate, electrolyte type and flow rate, discharge voltage and spacing were optimized. The results showed that the limit of detection (LOD) of Cr was improved from 650 μg/L (discharging in air) to 106 μg/L with great repeatability (RSD=1.3%, 10 mg/L, n=11). The determination results of Cr in brown rice flour reference material (GBW(E)100619) and actual industrial sewage by this method were consistent with those obtained by inductively coupled plasma-optical emission spectroscopy (ICP-OES)and the recoveries were 92.4%-104.0%, indicating that this method had superb application prospect in determination of Cr in water samples.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      RATHI B S, KUMAR P S, VO D V N. Sci. Total Environ., 2021, 797:149134.

    4. [4]

      BERRYMAN E J, PAKTUNC D. J. Hazard. Mater., 2022, 422:126873.

    5. [5]

      NOVAK M, MARTINKOVA E, CHRASTNY V, STEPANOVA M, SEBEK O, ANDRONIKOV A, CURIK J, VESELOVSKY F, PRECHOVA E, HOUSKOVA M, BUZEK F, FARKAS J, KOMAREK A. Catena, 2017, 158:371-380.

    6. [6]

      DAS P K, DAS B P, DASH P. Environ. Chem. Lett., 2021, 19(2):1369-1381.

    7. [7]

      DAYAN A D, PAINE A J. Hum. Exp. Toxicol, 2001, 20(9):439-451.

    8. [8]

      SUN H, BROCATO J, COSTA M. Curr. Environ. Health Rep., 2015, 2(3):295-303.

    9. [9]

      BUTERS J, BIEDERMANN T. J. Invest. Dermatol., 2017, 137(2):274-277.

    10. [10]

      GARCIA M, AGUIRRE M A, CANALS A. J. Anal. At. Spectrom., 2020, 35(2):265-272.

    11. [11]

      MASONE J, BRENNAN R, RUSSELL G, HETTIPATHIRANA T. Spectroscopy, 2020, 35(9):48-49.

    12. [12]

      ZHU Q Y, ZHAO L Y, SHENG D, CHEN Y J, HU X, LIAN H Z, MAO L, CUI X B. Talanta, 2019, 195:173-180.

    13. [13]

    14. [14]

      LIU Y C, ZOU J, LUO B, YU H R, ZHAO Z G, XIA H. Microchem. J., 2021, 169:106547.

    15. [15]

      JIANG X M, CHEN Y, ZHENG C B, HOU X D. Anal. Chem., 2014, 86(11):5220-5224.

    16. [16]

      MENG F Y, YUAN X, LI X M, LIU Y, DUAN Y X. Appl. Spectrosc. Rev., 2014, 49(7):533-549.

    17. [17]

    18. [18]

    19. [19]

      WILLIAMS C B, AMAIS R S, FONTOURA B M, JONES B T, NOBREGA J A, DONATI G L. TrAC, Trends Anal. Chem., 2019, 116:151-157.

    20. [20]

      YANG C, HE D, ZHU Z L, PENG H, LIU Z F, WEN G J, BAI J H, ZHENG H T, HU S H, WANG Y X. Anal. Chem., 2017, 89(6):3694-3701.

    21. [21]

      NIU G H, KNODEL A, BURHENN S, BRANDT S, FRANZKE J. Anal. Chim. Acta, 2021, 1147:211-239.

    22. [22]

      WEBB M R, ANDRADE F J, HIEFTJE G M. Anal. Chem., 2007, 79(20):7899-7905.

    23. [23]

      WEBB M R, ANDRADE F J, HIEFTJE G M. Anal. Chem., 2007, 79(20):7807-7812.

    24. [24]

      GREDA K, JAMROZ P, POHL P. J. Anal. At. Spectrom., 2013, 28(8):1233-1241.

    25. [25]

      YU J, YANG S X, SUN D X, LU Q F, ZHENG J D, ZHANG X M, WANG X. Microchem. J., 2016, 128:325-330.

    26. [26]

      ZU W C, WANG Y, YANG X T, LIU C. Talanta, 2017, 173:88-93.

    27. [27]

      ZHENG P C, LUO Y J, WANG J M, HU Q, YANG Y, MAO X F, LAI C H. J. Anal. At. Spectrom., 2021, 36(6):1228-1234.

    28. [28]

      ZHAO M Y, PENG X X, YANG B C, WANG Z. J. Anal. At. Spectrom., 2020, 35(6):1148-1155.

    29. [29]

    30. [30]

      CHENG J Q, LI Q, ZHAO M Y, WANG Z. Anal. Chim. Acta, 2019, 1077:107-115.

    31. [31]

      GREDA K, JAMROZ P, DZIMITROWICZ A, POHL P. J. Anal. At. Spectrom., 2015, 30(1):154-161.

    32. [32]

      GREDA K, POHL P. Food Chem., 2022, 371:131178.

    33. [33]

      PENG X X, GUO X H, GE F, WANG Z. J. Anal. At. Spectrom., 2019, 34(2):394-400.

    34. [34]

      WANG Z, SCHWARTZ A J, RAY S J, HIEFTJE G M. J. Anal. At. Spectrom., 2013, 28(2):234-240.

    35. [35]

      WANG Z, GAI R Y, ZHOU L, ZHANG Z. J. Anal. At. Spectrom., 2014, 29(11):2042-2049.

    36. [36]

      GREDA K, SWIDERSKI K, JAMROZ P, POHL P. Microchem. J., 2017, 130:7-13.

    37. [37]

      MEZEI P, CSERFALVI T, KIM H J, MOTTALEB M A. Analyst, 2001, 126(5):712-714.

    38. [38]

      MANJUSHA R, REDDY M A, SHEKHAR R, JAIKUMAR S. J. Anal. At. Spectrom., 2013, 28(12):1932-1939.

    39. [39]

      GREDA K, JAMROZ P, POHL P. Talanta, 2013, 108:74-82.

    40. [40]

      GREDA K, JAMROZ P, POHL P. J. Anal. At. Spectrom., 2013, 28(8):1233-1241.

    41. [41]

      GORSKA M, POHL P. Talanta, 2021, 226:12155.

    42. [42]

      YANG C, CHENG G, CHENG S Q, LIU X, LIU Y, ZHENG H T, HU S H, ZHU Z L. Anal. Chem., 2021, 93(49):16393-16400.

  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Minglei SunZhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108

    5. [5]

      Ruihu Wang Aidang Lu . 新型铬(VI)检测试纸的制备及应用——介绍一个应用化学综合实验. University Chemistry, 2025, 40(8): 284-290. doi: 10.12461/PKU.DXHX202410102

    6. [6]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    7. [7]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    11. [11]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    15. [15]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    16. [16]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    17. [17]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    18. [18]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

Metrics
  • PDF Downloads(9)
  • Abstract views(610)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return