Citation: SHI Ruo-Han,  YAN Guo-Quan,  GAO Ming-Xia,  ZHANG Xiang-Min. Deep Coverage in Identification of Proteome Based on Separation by Multi-dimensional Liquid Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1179-1187,1242. doi: 10.19756/j.issn.0253-3820.221117 shu

Deep Coverage in Identification of Proteome Based on Separation by Multi-dimensional Liquid Chromatography

  • Corresponding author: YAN Guo-Quan,  ZHANG Xiang-Min, 
  • Received Date: 9 March 2022
    Revised Date: 14 May 2022

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFA0505003) and the National Natural Science Foundation of China (No.21775027).

  • Sequence coverage of identified proteins could be significantly improved when human urine proteins were effectively separated based on multi-dimensional liquid chromatography (MDLC). The high-efficient two-dimensional (2D) separating system involved strong anion exchange chromatography as the first dimension (1stD-SAX) and reversed phase liquid chromatography as the second dimension (2ndD-RPLC). After optimization of separate conditions, the peak capacity of 2D chromatographic system exceeded 40000. With regard to technique demands and ability to identify, 50 fractions were collected in the first dimension and 64 fractions were collected in the second dimension respectively, with valid peak capacity reaching 3200. On the basis of this system, the separation of intact proteins as well as the deep coverage of identification could be realized in human urine proteome. Urine samples from a group of healthy volunteers were collected and pretreatment including centrifugation and ultrafiltration was conducted subsequently to purify samples. To further improve pertinence, all samples were initially separated by 1stD-SAX, and the fraction 14 collected from 39 to 42 min was regarded as the main target. Fraction 14 was divided equally into two parts. One was digested and identified directly to obtain mass spectrometry (MS) data, while the other was further separated by 2ndD-RPLC and 64 fractions were collected. Then the 64 fractions were digested and identified individually to obtain aggregate data. Statistics indicated that 628 proteins were identified without 2ndD-RPLC separation while 2440 proteins were identified from 64 fractions. Among 588 proteins identified in common, the sequence coverage was significantly improved when a 2D separation was involved. Further analysis revealed that the sequence coverage of proteins composed of no more than 500 amino acids (AAs) reached 31.30%, a 2.02 fold-change compared with merely one-dimensional (1D) separation. For proteins composed of 501-1000 AAs, the sequence coverage increased from 7.79% in 1D separation to 21.35% in 2D separation. For larger proteins composed of over 1000 AAs, the sequence coverage could be enhanced by 3.87 times. These results verified the extraordinary improvement in coverage and reliability of identification when proteins were adequately separated by MDLC compared with the commonly used shotgun method. Meanwhile, the peptide counts from MS analysis could be increased to reduce the probability of mismatch or omission, thus contributing to acquiring more complete and detailed information on protein sequence, which was of great significance to realize deep coverage identification of proteome and establish more accurate proteomic databases.
  • 加载中
    1. [1]

      SMITH G, BARRATT D, ROWLINSON R, NICKSON J, TONGE R. Proteomics, 2005, 5(9):2315-2318.

    2. [2]

      OH J, PYO J H, JO E H, HWANG S I, KANG S C, JUNG J H, PARKE K, KIM S Y, CHOI J Y, LIM J. Proteomics, 2004, 4(11):3485-3497.

    3. [3]

      KHAN A, PACKER N H. J. Proteome Res., 2006, 5(10):2824-2838.

    4. [4]

      YUAN H, JIANG B, ZHAO B, ZHANG L, ZHANG Y. Anal. Chem., 2019, 91(1):264-276.

    5. [5]

    6. [6]

      THONGBOONKERD V, MCLEISH K R, ARTHUR J M, KLEIN J B. Kidney Int., 2002, 62(4):1461-1469.

    7. [7]

      SPAHR C S, DAVIS M T, MCGINLEY M D, ROBINSON J H, BURES E J, BEIERLE J, MORT J, COURCHESNE P L, CHEN K, WAHL R C, YU W, LUETHY R, PATTERSON S D. Proteomics, 2001, 1(1):93-107.

    8. [8]

      DAVIS M T, SPAHR C S, MCGINLEY M D, ROBINSON J H, BURES E J, BEIERLE J, MORT J, YU W, LUETHY R, PATTERSON S D. Proteomics, 2001, 1(1):108-117.

    9. [9]

      MARIMUTHU A, O'MEALLY R N, CHAERKADY R, SUBBANNAYYA Y, NANJAPPA V, KUMAR P, KELKAR D S, PINTO S M, SHARMA R, RENUSE S, GOEL R, CHRISTOPHER R, DELANGHE B, COLE R N, HARSHA H C, PANDEY A. J. Proteome Res., 2011, 10(6):2734-2743.

    10. [10]

      ZHAO M, LI M, YANG Y, GUO Z, SUN Y, SHAO C, LI M, SUN W, GAO Y. Sci. Rep., 2017, 7:3024.

    11. [11]

      LIN L, YU Q, ZHENG J, CAI Z, TIAN R. Clin. Proteomics, 2018, 15:42.

    12. [12]

      SWENSEN A C, HE J, FANG A C, YE Y, NICORA C D, SHI T, LIU A Y, SIGDEL T K, SARWAL M M, QIAN W. J. Front. Med.(Lausanne), 2021, 8:548212.

    13. [13]

      LI Y, WANG Y, LIU H, SUN W, DING B, ZHAO Y, CHEN P, ZHU L, LI Z, LI N, CHANG L, WANG H, BAI C, XU P. Urine (Amst), 2020, 2:1-8.

    14. [14]

      TIAN W, ZHANG N, JIN R, FENG Y, WANG S, GAO S, GAO R, WU G, TIAN D, TAN W, CHEN Y, GAO G F, WONG C L. Nat. Commun., 2020, 11(1):5859.

    15. [15]

      BI X, LIU W, DING X, LIANG S, ZHENG Y, ZHU X, QUAN S, YI X, XIANG N, DU J, LYU H, YU D, ZHANG C, XU L, GE W, ZHAN X, HE J, XIONG Z, ZHANG S, LI Y, XU P, ZHU G, WANG D, ZHU H, CHEN S, LI J, ZHAO H, ZHU Y, LIU H, XU J, SHEN B, GUO T. Cell Rep., 2021, 38(3):110271.

    16. [16]

    17. [17]

      KIM K H, MOON M H. J. Proteome Res., 2009, 8(9):4272-4278.

    18. [18]

      THOMAS S, HAO L, DELANEY K, MCLEAN D, STEINKE L, MARKER P C, VEZINA C M, LI L, RICKE W A. J. Proteome Res., 2020, 19(4):1375-1382.

    19. [19]

      HUANG Z, YAN G, GAO M, ZHANG X. Anal. Chem., 2016, 88(4):2440-2445.

    20. [20]

      ZHU S, ZHANG X, GAO M, HONG G, YAN G, ZHANG X. Proteomics, 2012, 12(23-24):3451-3463.

    21. [21]

  • 加载中
    1. [1]

      Houjin Li Lin Wu Xingwen Sun Yuan Zheng Zhanxiang Liu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100

    2. [2]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    3. [3]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    4. [4]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    5. [5]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    9. [9]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    10. [10]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    13. [13]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    14. [14]

      Sheng Zhang Mingyu Wang Xiaohong Wang Jiancheng Feng . Multidimensional Teaching Design and Ideological and Political Exploration of Analytical Chemistry Experiment under the Complete Credit System. University Chemistry, 2024, 39(2): 189-195. doi: 10.3866/PKU.DXHX202307071

    15. [15]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    16. [16]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    17. [17]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    18. [18]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    19. [19]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

    20. [20]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

Metrics
  • PDF Downloads(9)
  • Abstract views(645)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return