Citation: LIU Kai,  CHENG Xiao-Xuan,  WAN Jian-Fen,  PAN Hua-Ping,  YAO Jia-Feng. Development of an Electrical Impedance Sensor for Monitoring Stem Cell Growth[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1188-1195. doi: 10.19756/j.issn.0253-3820.221116 shu

Development of an Electrical Impedance Sensor for Monitoring Stem Cell Growth

  • Corresponding author: YAO Jia-Feng, jiaf.yao@nuaa.edu.cn
  • Received Date: 9 March 2022
    Revised Date: 25 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.62071224), the Jiangsu Provincial Key R&D Program Social Development-General Project (No.BE2021618), the Open Project of State Key Laboratory of Precision Testing Technology and Instruments (Tianjin University) (No.pilab2107), and the Medical Engineering of Jiangning Hospital Affiliated to Nanjing Medical University Fusion Laboratory Open Project (No.JNYYZXKY202105).

  • The electrical properties of stem cells during development were investigated based on bioimpedance spectroscopy. First, a high-precision bioimpedance spectroscopy sensor for monitoring stem cell development process was developed. The sensor adopted an inverted tapered structure to realize the self-adaptation of the detection target size, and the electric field was concentrated and narrowed by the tapered chamber. The electric field in the detection area was homogenized to improve the detection accuracy of stem cells. Then, the structure of the sensor was verified and optimized by numerical simulation method. The results showed that the sensor could avoid the influence of positional changes during the development of stem cells on the detection results, and was more sensitive to the size changes of developing stem cells. The structural parameters were optimized, and the optimal monitoring sensitivity was 0.882. Finally, the proposed method was verified by experiment. Taking zebrafish embryonic stem cells as the monitoring object, the development process was monitored for 30 hours. The experimental results showed that with the development of zebrafish embryos, the impedance value gradually increased, and the relaxation frequency decreased gradually (from 1870 kHz to 481 kHz). The results showed that the sensor and monitoring method designed in this work could achieve high-precision monitoring of the developmental process of stem cells.
  • 加载中
    1. [1]

      FU X, HE Q, TAO Y, WANG M, WANG W, WANG Y, YU Q, ZHANG F, ZHANG X, CHEN Y G, GAO D, HU P, HUI L, WANG X, ZENG Y A. Sci. China Life Sci., 2021, 64(12):1998-2029.

    2. [2]

      ZHAO Y, WANG M, LIANG F, LI J. Stem Cell Res. Ther., 2021, 12(1):588.

    3. [3]

      FORBESL H, ANDREWS M R. Neural Reneger. Res., 2021, 16(4):614-617.

    4. [4]

      CHAN H J, YANSHRE E, ROY J, TIPOE G L, FUNG M L, LIM L W. Int. J. Mol. Sci., 2021, 22(18):10151.

    5. [5]

      ITO E, IHA K, YOSHIMURA T, NAKAISHI K, WATABE S. Adv. Clin. Chem, 2021, 101:121-133.

    6. [6]

      LIN Q, HUANG Z, YE X, YANG B, FANG X, LIU B, CHEN H, KONG J. Talanta, 2021, 225:122090.

    7. [7]

      BRAUN A C, CAMPOS F A B, ABDALLAH E A, RUANO A P C, MEDINA T S, TARIKI M S, PINTO F F E, MELLO C A L, CHINEN L T D. Front. Oncol., 2021, 11:622626.

    8. [8]

    9. [9]

    10. [10]

      DETREZ E, KERZERHO V, BELHAJ M M, VERGNET A, VERDAL H, ROUYER T, BONHOMMEAU S, LAMLIH A, JULIEN M, BEN A F, RENOVELL M, BERNARD S, SOULIER F. Aquaculture, 2022, 547:737396.

    11. [11]

      RAPOPORT Y, GRIMALSKY V, FEDUN V, AGAPITOV O, BONNELL J, GRYTSAI A, MILINEVSKY G, LIASHCHUK A, ROZHNOI A, SOLOVIEVA M, GULIN A. Ann. Geophys., 2020, 38(1):207-230.

    12. [12]

      WANG L, HU S, LIU K, CHEN B, WU H, JIA J, YAO J. Rev. Sci. Instrum., 2020, 91(12):124104.

    13. [13]

    14. [14]

      VEMBADI A, MENACHERY A, QASAIMEH M A. Front. Bioeng. Biotechnol., 2019, 7:147.

    15. [15]

      GAWAD S, SCHILD L, RENAUD P. Lab Chip, 2001, 1(1):76-82.

    16. [16]

      DE NINNO A, ERRICO V, BERTANI F R, BUSINARO L, BISEGNA P, CASELLI F. Lab Chip, 2017, 17(6):1158-1166.

    17. [17]

      ASAMI K, IRIMAJIRI A. Phys. Med. Biol., 2000, 45(11):3285-3297.

    18. [18]

      SONG J H, LEE S M, YOO K H. RSC Adv., 2018, 8(54):31246-31254.

    19. [19]

      ZHANG Z Z, ZHENG T Y, ZHU R. Anal. Chem., 2020, 92(18):12579-12587.

    20. [20]

      HUA S Z, PENNELL T. Lab Chip, 2009, 9(2):251-256.

    21. [21]

      LEI K F, HO Y C, HUANG C H, HUANG C H, PAI P C. Talanta, 2021, 229:122259.

    22. [22]

      AMERI S K, SINGH P K, DOKMECI M R, KHADEMHOSSEINI A, XU Q, SONKUSALE S R. Biosens. Bioelectron., 2014, 54:462-467.

    23. [23]

      ZHANG F, JIN T, HU Q, HE P. J. Electroanal. Chem., 2018, 823:531-536.

    24. [24]

      WAN J, YIN H, LIU K, ZHU C, GUAN X, YAO J. IEEE Sens. J., 2021, 1(1):1-9.

    25. [25]

      SUN T, GREEN N G, MORGAN H. Nano, 2008, 3(1):55-63.

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    4. [4]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    8. [8]

      Yunchao Li Hong Yuan Yuan Chun Xiaokui Wang Fuping Tian Yunshan Bai Yongmei Liu Wanchun Zhu Shu'e Song Zhongyun Wu Li Wang Yufeng Li Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Electrical Properties. University Chemistry, 2025, 40(5): 165-177. doi: 10.12461/PKU.DXHX202503055

    9. [9]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    12. [12]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    13. [13]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    15. [15]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    18. [18]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

Metrics
  • PDF Downloads(31)
  • Abstract views(1188)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return