Citation: LIU Kai,  CHENG Xiao-Xuan,  WAN Jian-Fen,  PAN Hua-Ping,  YAO Jia-Feng. Development of an Electrical Impedance Sensor for Monitoring Stem Cell Growth[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1188-1195. doi: 10.19756/j.issn.0253-3820.221116 shu

Development of an Electrical Impedance Sensor for Monitoring Stem Cell Growth

  • Corresponding author: YAO Jia-Feng, jiaf.yao@nuaa.edu.cn
  • Received Date: 9 March 2022
    Revised Date: 25 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.62071224), the Jiangsu Provincial Key R&D Program Social Development-General Project (No.BE2021618), the Open Project of State Key Laboratory of Precision Testing Technology and Instruments (Tianjin University) (No.pilab2107), and the Medical Engineering of Jiangning Hospital Affiliated to Nanjing Medical University Fusion Laboratory Open Project (No.JNYYZXKY202105).

  • The electrical properties of stem cells during development were investigated based on bioimpedance spectroscopy. First, a high-precision bioimpedance spectroscopy sensor for monitoring stem cell development process was developed. The sensor adopted an inverted tapered structure to realize the self-adaptation of the detection target size, and the electric field was concentrated and narrowed by the tapered chamber. The electric field in the detection area was homogenized to improve the detection accuracy of stem cells. Then, the structure of the sensor was verified and optimized by numerical simulation method. The results showed that the sensor could avoid the influence of positional changes during the development of stem cells on the detection results, and was more sensitive to the size changes of developing stem cells. The structural parameters were optimized, and the optimal monitoring sensitivity was 0.882. Finally, the proposed method was verified by experiment. Taking zebrafish embryonic stem cells as the monitoring object, the development process was monitored for 30 hours. The experimental results showed that with the development of zebrafish embryos, the impedance value gradually increased, and the relaxation frequency decreased gradually (from 1870 kHz to 481 kHz). The results showed that the sensor and monitoring method designed in this work could achieve high-precision monitoring of the developmental process of stem cells.
  • 加载中
    1. [1]

      FU X, HE Q, TAO Y, WANG M, WANG W, WANG Y, YU Q, ZHANG F, ZHANG X, CHEN Y G, GAO D, HU P, HUI L, WANG X, ZENG Y A. Sci. China Life Sci., 2021, 64(12):1998-2029.

    2. [2]

      ZHAO Y, WANG M, LIANG F, LI J. Stem Cell Res. Ther., 2021, 12(1):588.

    3. [3]

      FORBESL H, ANDREWS M R. Neural Reneger. Res., 2021, 16(4):614-617.

    4. [4]

      CHAN H J, YANSHRE E, ROY J, TIPOE G L, FUNG M L, LIM L W. Int. J. Mol. Sci., 2021, 22(18):10151.

    5. [5]

      ITO E, IHA K, YOSHIMURA T, NAKAISHI K, WATABE S. Adv. Clin. Chem, 2021, 101:121-133.

    6. [6]

      LIN Q, HUANG Z, YE X, YANG B, FANG X, LIU B, CHEN H, KONG J. Talanta, 2021, 225:122090.

    7. [7]

      BRAUN A C, CAMPOS F A B, ABDALLAH E A, RUANO A P C, MEDINA T S, TARIKI M S, PINTO F F E, MELLO C A L, CHINEN L T D. Front. Oncol., 2021, 11:622626.

    8. [8]

    9. [9]

    10. [10]

      DETREZ E, KERZERHO V, BELHAJ M M, VERGNET A, VERDAL H, ROUYER T, BONHOMMEAU S, LAMLIH A, JULIEN M, BEN A F, RENOVELL M, BERNARD S, SOULIER F. Aquaculture, 2022, 547:737396.

    11. [11]

      RAPOPORT Y, GRIMALSKY V, FEDUN V, AGAPITOV O, BONNELL J, GRYTSAI A, MILINEVSKY G, LIASHCHUK A, ROZHNOI A, SOLOVIEVA M, GULIN A. Ann. Geophys., 2020, 38(1):207-230.

    12. [12]

      WANG L, HU S, LIU K, CHEN B, WU H, JIA J, YAO J. Rev. Sci. Instrum., 2020, 91(12):124104.

    13. [13]

    14. [14]

      VEMBADI A, MENACHERY A, QASAIMEH M A. Front. Bioeng. Biotechnol., 2019, 7:147.

    15. [15]

      GAWAD S, SCHILD L, RENAUD P. Lab Chip, 2001, 1(1):76-82.

    16. [16]

      DE NINNO A, ERRICO V, BERTANI F R, BUSINARO L, BISEGNA P, CASELLI F. Lab Chip, 2017, 17(6):1158-1166.

    17. [17]

      ASAMI K, IRIMAJIRI A. Phys. Med. Biol., 2000, 45(11):3285-3297.

    18. [18]

      SONG J H, LEE S M, YOO K H. RSC Adv., 2018, 8(54):31246-31254.

    19. [19]

      ZHANG Z Z, ZHENG T Y, ZHU R. Anal. Chem., 2020, 92(18):12579-12587.

    20. [20]

      HUA S Z, PENNELL T. Lab Chip, 2009, 9(2):251-256.

    21. [21]

      LEI K F, HO Y C, HUANG C H, HUANG C H, PAI P C. Talanta, 2021, 229:122259.

    22. [22]

      AMERI S K, SINGH P K, DOKMECI M R, KHADEMHOSSEINI A, XU Q, SONKUSALE S R. Biosens. Bioelectron., 2014, 54:462-467.

    23. [23]

      ZHANG F, JIN T, HU Q, HE P. J. Electroanal. Chem., 2018, 823:531-536.

    24. [24]

      WAN J, YIN H, LIU K, ZHU C, GUAN X, YAO J. IEEE Sens. J., 2021, 1(1):1-9.

    25. [25]

      SUN T, GREEN N G, MORGAN H. Nano, 2008, 3(1):55-63.

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    6. [6]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    7. [7]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Hui Xiong Yan Wang Rongxian Bai Yongqi Wu Chengmei Liu Yuefa Gong Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    14. [14]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    15. [15]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    19. [19]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(23)
  • Abstract views(660)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return