Citation: BAO Xun,  ZHANG Qiang-Ling,  LIANG Qu,  SUN Qin,  XU Wei,  ZOU Xue,  HUANG Chao-Qun,  SHEN Cheng-Yin,  CHU Yan-Nan. Development of Gas Dilution System with Humidity Control Function Using a Novel Proportion-integral Two-flow Method[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 340-347. doi: 10.19756/j.issn.0253-3820.221110 shu

Development of Gas Dilution System with Humidity Control Function Using a Novel Proportion-integral Two-flow Method

  • Corresponding author: ZHANG Qiang-Ling, qlzhang@cmpt.ac.cn
  • Received Date: 1 March 2022
    Revised Date: 3 November 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22076190, 21876176) and the HFIPS Director′s Fund (Nos. BJPY2021B08, YZJJ2022QN45, YZJJZX202009).

  • Concentration calibration is the premise of accurate quantitative detection of gas analyzer, and concentration calibration cannot be separated from gas dilution system. In this work, a novel wet gas preparation method (proportion-integral (PI) two-flow method) was established, and that a simple yet accurate gas dilution system with humidity control function based on PI two-flow method was developed, which was not affected by intermediate variables. Firstly, the performance of the humidifier, an essential part of the system, was investigated. The results showed that there was a certain fluctuation (96%-103%) in the relative humidity (RH) at the outlet of the humidifier. Therefore, the PI two-flow method was developed to reduce the influence of the fluctuation on the humidity control accuracy of the whole system. A dew point transmitter was used to measure the RH at the system′s outlet as a feedback signal to automatically adjust the ratio of dry and wet gas, thereby realizing accurate control of humidity. The wet gas was prepared by the following method, the dry gas passing through a self-made bubbling humidifier. Subsequently, the system′s response characteristics were investigated by step input and sinusoidal input under different flow rates and temperature conditions. The results showed that the RH control range of the system was 5%-100%. The flow rate of the system could be up to 1000 mL/min. The RH control accuracy could realize 0.026%RH (25 °C, 100%RH) (without considering the measurement deviation of the dewpoint transmitter). The setting time reached 38 s (25 °C, 500 mL/min). The system could track the sinusoidal input when the period was more than 175 s in 1000 mL/min. Finally, the application research of the system was implemented by using proton transfer reaction mass spectrometry (PTR-MS). As the RH of sampling air of PTR-MS gradually increased, the relative ratio of H3O+ decreased, and the relative proportion of H3O+(H2O) increased. The above application showed that the new system could meet the application requirements of gas analysis instruments with large and continuous sampling flow rate in a wide humidity range (10%-100%). The new system would be expected to calibrate gas measurements instruments sensitive to humidity.
  • 加载中
    1. [1]

      SARKAR C, SINHA V, KUMAR V, RUPAKHETI M, PANDAY A, MAHATA K S, RUPAKHETI D, KATHAYAT B, LAWRENCE M G. Atmos. Chem. Phys., 2016, 16(6):3979-4003.

    2. [2]

      MATSUMOTO N, WATANABE T, KATO K. J. Chromatogr. A, 2013, 1282:190-193.

    3. [3]

      JARDINE K J, HENDERSON W M, HUXMAN T E, ABRELL L. Atmos. Meas. Tech., 2010, 3(6):1569-1576.

    4. [4]

      TAIPALE R, RUUSKANEN T M, RINNE J, KAJOS M K, HAKOLA H, POHJA T, KULMALA M. Atmos. Chem. Phys., 2008, 8(22):6681-6698.

    5. [5]

      PANG X. J. Environ. Sci., 2015, 32:196-206.

    6. [6]

      LI R, WARNEKE C, GRAUS M, FIELD R, GEIGER F, VERES P R, SOLTIS J, LI S M, MURPHY S M, SWEENEY C, PÉTRON G, ROBERTS J M, DE GOUW J. Atmos. Meas. Tech., 2014, 7(10):3597-3610.

    7. [7]

      WARNEKE C, VERES P, HOLLOWAY J S, STUTZ J, TSAI C, ALVAREZ S, RAPPENGLUECK B, FEHSENFELD F C, GRAUS M, GILMAN J B, DE GOUW J A. Atmos. Meas. Tech., 2011, 4(10):2345-2358.

    8. [8]

      HAN J, LIU X, CHEN D, JIANG M. J. Aerosol Sci., 2020, 139:105462.

    9. [9]

      CHEN H Y, CHEN C. Sensors, 2019, 19(5):1213.

    10. [10]

      ASHTON E, OAKLEY W C, BRACK P, DANN S E. ACS Appl. Energy Mater., 2022, 5(7):8336-8345.

    11. [11]

      EGGERT G. Heritage Sci., 2022, 10(1):54.

    12. [12]

      MILOSEVIC D. N, STEPANIC M. N, BABIC M. M. Therm. sci., 2012, 16(1):193-205.

    13. [13]

      CHOI B I, LEE S W, KIM J C, WOO S B. Int. J. Thermophys., 2015, 36(8):2231-2241.

    14. [14]

      ISHIWATA N, ABE H. AIP Adv., 2022, 12(3):035114.

    15. [15]

      ABD EL-GALIL D M, MAHMOUD E. Measurement, 2018, 124:159-162.

    16. [16]

      GÓMEZ J I S, TAKHTEHFOULADI E S, SCHLÖGL R, RULAND H. Chem. Ing. Tech., 2020, 92(10):1574-1585.

    17. [17]

      KARI E, MIETTINEN P, YLI-PIRILÄ P, VIRTANEN A, FAIOLA C L. Int. J. Mass Spectrom., 2018, 430:87-97.

    18. [18]

      ABD-UR-REHMAN H M, AL-SULAIMAN F A. Appl. Therm. Eng., 2017, 120:530-536.

    19. [19]

      PARK S, OH I H. J. Power Sources, 2009, 188(2):498-501.

    20. [20]

      RAMAN S, SWAMINATHAN S, BHARDWAJ S, TANNERU H K, BULLECKS B, RENGASWAMY R. Int. J. Hydrogen Energy, 2019, 44(1):389-407.

    21. [21]

      SUNG C C, BAI C Y, CHEN J H, CHANG S J. J. Power Sources, 2013, 239:151-156.

    22. [22]

      JIA Y, ZHANG R, LV X, ZHANG T, FAN Z. Processes, 2022, 10(3):534.

    23. [23]

      LIU C, ZHAO J, GU J, DU Y, LI Z, ZHU Z, MAO E. Appl. Sci., 2020, 10(9):3179.

    24. [24]

      SUN Q, BAO X, LIANG Q, XU W, ZHANG Q, ZOU X, HUANG C, SHEN C, CHU Y. J. Chromatogr. A, 2022, 1676:463210.

    25. [25]

      RAJESHWARAN S, AGEES KUMAR C, GANAPATHY K. Intell. Autom. Soft Comput., 2023, 35(2):1611-1625.

    26. [26]

      MANAP H H, ABDUL WAHAB A K, MOHAMED ZUKI F. Biomed. Signal Process. Control, 2021, 64:102300.

    27. [27]

      LAWRENCE M G. Bull. Am. Meteorol. Soc., 2005, 86(2):225-234.

  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    10. [10]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    19. [19]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    20. [20]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

Metrics
  • PDF Downloads(2)
  • Abstract views(1281)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return