Citation: ZHANG Ze-Yu,  HU Quan-Hong,  LI Lin-Lin. Research Progress on Bismuth-based Nanoparticles for Biosensing and Bioimaging[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1123-1130. doi: 10.19756/j.issn.0253-3820.221098 shu

Research Progress on Bismuth-based Nanoparticles for Biosensing and Bioimaging

  • Corresponding author: LI Lin-Lin, lilinlin@binn.cas.cn
  • Received Date: 24 February 2022
    Revised Date: 10 March 2022

    Fund Project: Supported by the National Nature Science Foundation of China (Nos.82072065, 81471784) and the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDA16021103).

  • As a biocompatible and inexpensive metal, bismuth has been used to design and synthesize various nanoparticles with unique structures, compositions and physicochemical properties. The high X-ray attenuation coefficient and near-infrared absorption, excellent photothermal conversion efficiency, and long circulation half-life of bismuth-based nanoparticles make them promising for applications in cancer drug delivery, photothermal therapy and radiotherapy, multimodal imaging, theranostics, biosensing and tissue engineering. In this review, the applications of bismuth-based nanoparticles in biosensing and bioimaging were summarized, and the opportunities and challenges faced by bismuth-based nanoparticles were also discussed.
  • 加载中
    1. [1]

      EL-SAFTY S A, SHENASHEN M A. Mater. Today Bio, 2020, 5:100044.

    2. [2]

      GRIFFITH D M, LI H Y, WERRETT M V, ANDREWS P C, SUN H Z. Chem. Soc. Rev., 2021, 50(21):12037-12069.

    3. [3]

      HUANG W C, ZHU J, WANG M K, HU L P, TANG Y F, SHU Y Q, XIE Z J, ZHANG H. Adv. Funct. Mater., 2021, 31(10):2007584.

    4. [4]

    5. [5]

      HE W Y, AI K L, LU L H. Sci. China Chem., 2015, 58(5):753-760.

    6. [6]

    7. [7]

      AI K L, LIU Y L, LIU J H, YUAN Q H, HE Y Y, LU L H. Adv. Mater., 2011, 23(42):4886-4891.

    8. [8]

      YANG S S, LI Z L, WANG Y L, FAN X L, MIAO Z H, HU Y, LI Z, SUN Y, BESENBACHER F, YU M. ACS Appl. Mater. Interfaces, 2018, 10(2):1605-1615.

    9. [9]

      DENG J J, XU S D, HU W K, XUN X J, ZHENG L Y, SU M. Biomaterials, 2018, 154:24-33.

    10. [10]

      ZHOU R Y, LIU X X, WU Y Z, XIANG H D, CAO J T, LI Y H, YIN W Y, ZU Y, LI J X, LIU R. ACS Nano, 2020, 14(10):13016-13029.

    11. [11]

      YU X J, LIU X Y, YANG K, CHEN X Y, LI W W. ACS Nano, 2021, 15(2):2038-2067.

    12. [12]

      KANG Y W, YU X J, FAN X Y, AODENGGERILE, ZHAO S Z, TU C L, YAN Z Q, WANG R B, LI W W, QIU H B. ACS Nano, 2020, 14(4):4336-4351.

    13. [13]

      DING S N, SHAN D, XUE H G, COSNIER S. Bioelectrochemistry, 2010, 79(2):218-222.

    14. [14]

      TAUFIK S, YUSOF N A, TEE T W, RAMLI I. Int. J. Electrochem. Sci., 2011, 6(6):1880-1891.

    15. [15]

      PERIASAMY A P, YANG S Y, CHEN S M. Talanta, 2011, 87:15-23.

    16. [16]

      ZHENG W R, LI Y, LEE L Y S. Sens. Actuators, B, 2022, 357:131334.

    17. [17]

      WANG X P, YAN T, LI Y, LIU Y X, DU B, MA H M, WEI Q. Sci. Rep., 2015, 5:17945.

    18. [18]

      MENG X M, XU Z N, WANG M, YIN H S, AI S Y. Anal. Methods, 2012, 4(6):1736-1741.

    19. [19]

      DONG Y P, HUANG L, ZHANG J, CHU X F, ZHANG Q F. Electrochim. Acta, 2012, 74:189-193.

    20. [20]

      SUN B, QIAO F M, CHEN L J, ZHAO Z, YIN H S, AI S Y. Biosens. Bioelectron., 2014, 54:237-243.

    21. [21]

      ZHU Q H, GAO F, YANG Y Z, ZHANG B, WANG W, HU Z S, WANG Q X. Sens. Actuators, B, 2015, 207:819-826.

    22. [22]

      LIU S S, ZHAO S L, TU W W, WANG X Y, WANG X, BAO J C, WANG Y, HAN M, DAI Z H. Chem.-Eur. J., 2018, 24(15):3677-3682.

    23. [23]

      SMITH B R, GAMBHIR S S. Chem. Rev., 2017, 117(3):901-986.

    24. [24]

      HAN X J, XU K, TARATULA O, FARSAD K. Nanoscale, 2019, 11(3):799-819.

    25. [25]

      MA G C, LIU X J, DENG G Y, YUAN H K, WANG Q G, LU J. J. Mater. Chem. B, 2018, 6(42):6788-6795.

    26. [26]

      LI Z L, HU Y, CHANG M L, HOWARD K A, FAN X L, SUN Y, BESENBACHER F, YU M. Nanoscale, 2016, 8(35):16005-16016.

    27. [27]

      LIU J, ZHENG X P, YAN L, ZHOU L J, TIAN G, YIN W Y, WANG L M, LIU Y, HU Z B, GU Z J. ACS Nano, 2015, 9(1):696-707.

    28. [28]

      YANG C Y, CHEN Y D, GUO W, GAO Y, SONG C Q, ZHANG Q, ZHENG N N, HAN X J, GUO C S. Adv. Funct. Mater., 2018, 28(18):1706827.

    29. [29]

      SONG Z H, LIU T, LAI H Q, MENG X F, YANG L, SU J Y, CHEN T F. ACS Nano, 2022, 16(3):4379-43963.

    30. [30]

      RABIN O, PEREZ J M, GRIMM J, WOJTKIEWICZ G, WEISSLEDER R. Nat. Mater., 2006, 5(2):118-122.

    31. [31]

      BROWN A L, GOFORTH A M. Chem. Mater., 2012, 24(9):1599-1605.

    32. [32]

      AI K L, HUANG J, HUANG Q, LIU M, CHEN Q H. Front. Pharmacol., 2022, 13:844037.

    33. [33]

      CHENG Y, CHANG Y, FENG Y L, JIAN H, TANG Z H, ZHANG H Y. Angew. Chem., Int. Ed., 2018, 57(1):246-251.

    34. [34]

      LI L H, LU Y, JIANG C Y, ZHU Y, YANG X F, HU X M, LIN Z M, ZHANG Y, PENG M M, XIA H. Adv. Funct. Mater., 2018, 28(5):1704623.

    35. [35]

      YU N, WANG Z J, ZHANG J L, LIU Z X, ZHU B, YU J, ZHU M F, PENG C, CHEN Z G. Biomaterials, 2018, 161:279-291.

    36. [36]

      SUN Q J, LIANG X, ZHENG Q, LIU W Z, XIAO S D, GU W Q, LU H. Helicobacter, 2010, 15(3):233-238.

    37. [37]

      GRAHAM D Y, DORE M P, LU H. Expert Rev. Anti-Infect. Ther., 2018, 16(9):679-687.

    38. [38]

      WANG Q, XU Y, XUE R, FAN J M, YU H, GUAN J W, WANG H Z, LI M, YU W, XIE Z Y. Small, 2022, 18(9):2104660.

    39. [39]

      WANG L H V, HU S. Science, 2012, 335(6075):1458-1462.

    40. [40]

      ZHANG Q H, CHEN J W, MA M, WANG H, CHEN H R. Chem. Mater., 2018, 30(15):5412-5421.

    41. [41]

      XIE H H, SHAO J D, WANG J H, SUN Z B, YU X F, WANG Q Q. RSC Adv., 2017, 7(79):50234-50238.

    42. [42]

      YU X J, LI A, ZHAO C Z, YANG K, CHEN X Y, LI W. ACS Nano, 2017, 11(4):3990-4001.

    43. [43]

      XIANG H D, WU Y Z, ZHU X Y, SHE M Y, AN Q, ZHOU R Y, XU P, ZHAO F, YAN L, ZHAO Y L. J. Am. Chem. Soc., 2021, 143(30):11449-11461.

    44. [44]

      YAO M H, MA M, CHEN Y, JIA X Q, XU G, XU H X, CHEN H R, WU R. Biomaterials, 2014, 35(28):8197-8205.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(15)
  • Abstract views(449)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return