Citation: YANG Fu-Bin,  MU Jin,  MA Jiu-Tong,  JIA Qiong. Research Progress on Application of Fluorescent Probes in Detection of Soil Pollutants[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1131-1142. doi: 10.19756/j.issn.0253-3820.221027 shu

Research Progress on Application of Fluorescent Probes in Detection of Soil Pollutants

  • Corresponding author: MA Jiu-Tong,  JIA Qiong, 
  • Received Date: 16 January 2022
    Revised Date: 17 May 2022

    Fund Project: Supported by the Changchun Science and Technology Bureau Project (No.CC202110361510018101).

  • Soil pollutants possess the characteristics of diversity, difficult degradation and easy accumulation. They can affect people's health through crop absorption and food chain pathways. Fluorescent probes have the properties of wide range of synthetic materials and easy modification, and have been widely used in the highly sensitive and selective detection of soil pollutants. This article discusses the concept, detection mechanism and classification of fluorescent probes, summarizes the research progress of different types of fluorescent probes in detection of inorganic pollutants, organic pollutants and microbial pollutants in soil in recent years, and discusses their development prospects.
  • 加载中
    1. [1]

      LIN Y S, YANG Z Y, ANAND A, HUANG C C, CHANG H T. Anal. Chim. Acta, 2022, 1191:339311.

    2. [2]

      DENG H H, ZHANG L N, HE S B, LIU A L, LI G W, LIN X H, XIA X H, CHEN W. Biosens. Bioelectron., 2015, 65:397-403.

    3. [3]

      LIANG Y F, WANG R J, LIU G, PU S Z. ACS Omega, 2019, 4(4):6597-6606.

    4. [4]

      CHEN H Y, HE K L, LI H, ZHANG Y Y, YAO S Z. Microchim. Acta, 2018, 185(10):484.

    5. [5]

      HUANG W, QU Y, ZHU Y, JIANG N, HUANG W. J. Mol. Struct., 2021, 1229:129862.

    6. [6]

      KIM K T, YOON S A, AHN J, CHOI Y, LEE M H, JUNG J H, PARK J. Sens. Actuators, B, 2017, 243:1034-1041.

    7. [7]

      RAJ T, SALUJA P, SINGH N. Sens. Actuators, B, 2015, 206:98-106.

    8. [8]

      LAN L, NIU Q, LI T. Anal. Chim. Acta, 2018, 1023:105-114.

    9. [9]

      SINGH P, SHARMA P. J. Photochem. Photobiol., A, 2021, 408:113096.

    10. [10]

      XI L L, MA H B, TAO G H. Chin. Chem. Lett., 2016, 27(9):1531-1536.

    11. [11]

      BASOGLU A, OCAK V, GUMRUKCUOGLU A. J. Fluoresc., 2020, 30(3):515-526.

    12. [12]

      SUN F, YANG L, LI S, WANG Y, WANG L, LI P, YE F, FU Y. J. Agric. Food Chem., 2021, 69(43):12661-12673.

    13. [13]

      ZHAO Q, RONG X, MA H, TAO G. J. Hazard. Mater., 2013, 250:45-52.

    14. [14]

      LI C L, LIU K T, LIN Y W, CHANG H T. Anal. Chem., 2011, 83(1):225-230.

    15. [15]

      WANG J, QIU F X, WU H Y, LI X, ZHANG T, NIU X H, YANG D Y, PAN J M, XU J C. Anal. Methods, 2016, 8(48):8554-8565.

    16. [16]

      VAZ R, BETTINI J, JÙNIOR J G F, LIMA E D S, BOTERO W G, SANTOS J C C, SCHIAVON M A. J. Photochem. Photobiol., A, 2017, 346:502-511.

    17. [17]

      TALL A, CUNHA F A, KABORE B, BARBOSA C D D S, ROCHA U, SALES T O, GOULART M O F, TAPSOBA I, SANTOS J C C. Microchem. J., 2021, 166:106219.

    18. [18]

      MENON S, VIKRAMAN A E, JESNY S, KUMAR K G. J. Fluoresc., 2016, 26(1):129-134.

    19. [19]

      GUO Y X, ZHANG Q F, SHANGGUANG X C, ZHEN G D. Spectrochim. Acta, Part A, 2013, 101:107-111.

    20. [20]

      MALDONADO C R, TOUCEDA-VARELA A, JONES A C, MAREQUE-RIVAS J C. Chem. Commun., 2011, 47(42):11700-11702.

    21. [21]

      LIU Y L, AI K L, CHENG X L, HUO L H, LU L H. Adv. Funct. Mater., 2010, 20(6):951-956.

    22. [22]

      TSENG W B, RAU J Y, CHIOU H C, TSENG W L. Environ. Res., 2022, 207:112144.

    23. [23]

      XU H M, XIAO K, ZHANG Q J, HUANG K L, SONG G, YAO Z Y. ACS Sustainable Chem. Eng., 2020, 8(17):6861-6867.

    24. [24]

      DU F Y, CHENG Z F, LAI Z, RUAN G H, ZHAO C X. New J. Chem., 2019, 43(47):18695-18701.

    25. [25]

      GOGOI J, CHOWDHURY D. J. Mater. Sci., 2020, 55(25):11597-11608.

    26. [26]

      LAI Z, GUO X, CHENG Z, RUAN G, DU F. ChemistrySelect, 2020, 5(6):1956-1960.

    27. [27]

      WANG J J, XIA T Z, LAN Z N, LIU G Y, HOU S L, HOU S F. Spectrochim. Acta, Part A, 2021, 259:119880.

    28. [28]

      YAN X, KONG D, JIN R, ZHAO X, LI H, LIU F, LIN Y, LU G. Sens. Actuators, B, 2019, 290:640-647.

    29. [29]

      SONG W, ZHANG H J, LIU Y H, REN C L, CHEN H L. Chin. Chem. Lett., 2017, 28(8):1675-1680.

    30. [30]

      YANG M, LIU M, WU Z, HE Y, GE Y, SONG G, ZHOU J. Microchim. Acta, 2019, 186(8):585.

    31. [31]

      YAN X, LI H, LI Y, SU X. Anal. Chim. Acta, 2014, 852:189-195.

    32. [32]

      LI J, SUN W, QIN Y, CUI P, SONG G, HUA X, WANG L, WANG M. Food Agric. Immunol., 2021, 32(1):740-753.

    33. [33]

      ZOU S, HOU C, FA H, ZHANG L, MA Y, DONG L, LI D, HUO D, YANG M. Sens. Actuators, B, 2017, 239:1033-1041.

    34. [34]

      SHENG E, LU Y, TAN Y, XIAO Y, LI Z, DAI Z. Anal. Chem., 2020, 92(6):4364-4370.

    35. [35]

      SUN H, MEI Q, SHIKHA S, LIU J, ZHANG J, ZHANG Y. Microchim. Acta, 2019, 186(2):106.

    36. [36]

      JIN Y, LIU K, LI G Q, LI C F, XIAO Z D, YUAN C, LI J Q. Anal. Chim. Acta, 2021, 1172:338679.

    37. [37]

      TU Y J, WANG S P, YUAN X T, XIANG Y Y, QIN K H, WEI Y L, ZHANG Q, CHEN X M, JI X L. Dyes Pigm., 2021, 184:108761.

    38. [38]

      TU Y J, WANG S P, YUAN X T, XIANG Y Y, QIN K H, WEI Y L, ZHANG Q, CHEN X M, JI X L. Dyes Pigm., 2020, 178:108316.

    39. [39]

      DAI H, DENG Z, ZENG Y, ZHANG J, YANG Y, MA Q, HU W, GUO L, LI L, WAN S, LIU H. J. Hazard. Mater., 2020, 398:122854.

    40. [40]

      HAZRA A, BEJ S, MONDAL A, MURMU N C, BANERJEE P. ACS Omega, 2020, 5(26):15949-15961.

    41. [41]

      DHIMAN S, KUMAR G, LUXAMI V, SINGH P, KUMAR S. New J. Chem., 2020, 44(26):10870-10877.

    42. [42]

      MA J, BIAN L, ZHAO L, FENG X, ZHAO L, WANG Z, PU Q. Talanta, 2019, 197:159-167.

    43. [43]

      CAO Y, WANG S, WU W, PENG H, YU Y, ZHU D. Talanta, 2019, 199:667-673.

    44. [44]

      YUAN H, LI D, LIU Y, XU X, XIONG C. Analyst, 2015, 140(5):1428-1431.

    45. [45]

      XU S F, LU H Z. Biosens. Bioelectron., 2016, 85:950-956.

    46. [46]

      LU H, QUAN S, XU S. J. Agric. Food. Chem., 2017, 65(44):9807-9814.

    47. [47]

      ŞEN F B, BENER M, APAK R. J. Fluoresc., 2021, 31(4):989-997.

    48. [48]

      KHANDARE D G, BANERJEE M, GUPTA R, KUMAR N, GANGULY A, SINGH D, CHATTERJEE A. RSC Adv., 2016, 6(58):52790-52797.

    49. [49]

      LIN W, LONG L, TAN W. Chem. Commun., 2010, 46(9):1503-1505.

    50. [50]

      LAI X J, QIU G, YE Q X, WANG R X, LIU J B. J. Photochem. Photobiol., A, 2020, 386:112101.

    51. [51]

      WANG Y, BAI J, HUO B, YUAN S, ZHANG M, SUN X, PENG Y, LI S, WANG J, NING B, GAO Z. Anal. Chem., 2018, 90(16):9936-9942.

    52. [52]

      BAIG M M F, CHEN Y C. Analyst, 2019, 144(10):3289-3296.

    53. [53]

      NA M, ZHANG S, LIU J, MA S, HAN Y, WANG Y, HE Y, CHEN H, CHEN X. J. Hazard. Mater., 2020, 386:121956.

    54. [54]

      EBRAHIM S, REDA M, HUSSIEN A, ZAYED D. Spectrochim. Acta, Part A, 2015, 150:212-219.

    55. [55]

      LIU A, SHEN Z, TIAN Y, SHI R, LIU Y, ZHAO Z, XIAN M. J. Chromatogr. A, 2017, 1526:151-156.

    56. [56]

      COUFALIK P, ZVERINA O, KOMAREK J. Spectrochim. Acta, Part A, 2016, 118:1-5.

    57. [57]

      NIE P, DONG T, HE Y, XIAO S. Sensors, 2018, 18(2):391.

    58. [58]

      MONDAL S, SUBRAMANIAM C. ACS Sustainable Chem. Eng., 2019, 7(17):14569-14579.

    59. [59]

      SUN N, DING Y, TAO Z X, YOU H J, HUA X D, WANG M H. Food Chem., 2018, 257:289-294.

    60. [60]

      LIU X, LI Y, LIANG J, ZHU W, XU J, SU R, YUAN L, SUN C. Talanta, 2016, 160:99-105.

    61. [61]

      LU X M, ZHANG J Y, XIE Y N, ZHANG X F, JIANG X M, HOU X D, WU P. Anal. Chem., 2018, 90(4):2939-2945.

    62. [62]

      BURRATTI L, CIOTTA E, DE MATTEIS F, PROSPOSITO P. Nanomaterials, 2021, 11(2):276.

    63. [63]

      MU J, PENG Y, SHI Z, ZHANG D W, JIA Q. Microchim. Acta, 2021, 188(11):384.

    64. [64]

      CHEN S H, LI Z, HUANG Z Z, JIA Q. Sens. Actuators, B, 2021, 332:129522.

    65. [65]

      CHEN S H, LI Z, LI W J, HUANG Z Z, JIA Q. Biosens. Bioelectron., 2021, 182:113198.

    66. [66]

      ZHANG Q J, LIAO M Y, XIAO K, ZHUANG K Y, ZHENG W L, YAO Z Y. Sens. Actuators, B, 2022, 350:130851.

    67. [67]

      LIU X, REN J, SU L, GAO X, TANG Y, MA T, ZHU L, LI J. Biosens. Bioelectron., 2017, 87:203-208.

    68. [68]

      YU Q Y, LI Z, CAO Q, QU S M, JIA Q. TrAC-Trends Anal. Chem., 2020, 129:115939.

    69. [69]

      SHARMA V, TIWARI P, KAUR N, MOBIN S M. Environ. Chem. Lett., 2021, 19(4):3229-3241.

    70. [70]

    71. [71]

      LAN L Y, YAO Y, PING J F, YING Y B. ACS Appl. Mater. Interfaces, 2017, 9(28):23287-23301.

    72. [72]

      QING T P, ZHANG K W, QING Z H, WANG X, LONG C C, ZHANG P, HU H Z, FENG B. Microchim. Acta, 2019, 186(10):670.

    73. [73]

      CZARNIK A W. Acc. Chem. Res., 1994, 27:302-308.

    74. [74]

      ZU F, YAN F, BAI Z, XU J, WANG Y, HUANG Y, ZHOU X. Microchim. Acta, 2017, 184(7):1899-1914.

    75. [75]

      WU L, HUANG C, EMERY B P, SEDGWICK A C, BULL S D, HE X P, TIAN H, YOON J, SESSLER J L, JAMES T D. Chem. Soc. Rev., 2020, 49(15):5110-5139.

    76. [76]

      SEDGWICK A C, WU L, HAN H H, BULL S D, HE X P, JAMES T D, SESSLER J L, TANG B Z, TIAN H, YOON J. Chem. Soc. Rev., 2018, 47(23):8842-8880.

    77. [77]

      HAN L, LIU S G, LIANG J Y, JU Y J, LI N B, LUO H Q. J. Hazard. Mater., 2019, 362:45-52.

    78. [78]

      PAL A, KARMAKAR M, BHATTA S R, THAKUR A. Coord. Chem. Rev., 2021, 448:214167.

    79. [79]

      MEI J, LEUNG N L C, KWOK R T K, LAM J W Y, TANG B Z. Chem. Rev., 2015, 115(21):11718-11940.

    80. [80]

      ZHAO Z, ZHANG H, LAM J W Y, TANG B Z. Angew. Chem., Int. Ed., 2020, 59(25):9888-9907.

    81. [81]

      HU L, ZHONG H, HE Z G. Colloids Surf., B, 2021, 200:111609.

    82. [82]

      LI D, CHEN Z H, MEI X F. Adv. Colloid Interface Sci., 2017, 250:25-39.

    83. [83]

      WAGH S B, MASLIVETC V A, LA CLAIR J J, KORNIENKO A. ChemBioChem, 2021, 22(22):3109-3139.

    84. [84]

      SHARMA R, RAGAVAN K V, THAKUR M S, RAGHAVARAO K S M S. Biosens. Bioelectron., 2015, 74:612-627.

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    7. [7]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    11. [11]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    16. [16]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    17. [17]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(20)
  • Abstract views(353)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return