Citation: WANG Dong,  XIA Jun-Mei,  HUANG Shuai,  YUAN Ling,  HUANG Gui-Lan. A Nuclear Magnetic Resonance Method for Mixture Analysis Based on One-Dimensional Doubly Selective Excitation Total Correlation Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1224-1232,1251. doi: 10.19756/j.issn.0253-3820.221026 shu

A Nuclear Magnetic Resonance Method for Mixture Analysis Based on One-Dimensional Doubly Selective Excitation Total Correlation Spectroscopy

  • Corresponding author: YUAN Ling,  HUANG Gui-Lan, 
  • Received Date: 15 January 2022
    Revised Date: 27 May 2022

    Fund Project: Supported by the Science and Technology Support Programs of Sichuan Province, China (No.2020YJ0288).

  • One-dimensional doubly selective total correlation spectroscopy (1D TOCSY-TOCSY) nuclear magnetic resonance (NMR) method was constructed using 1D TOCSY as editing module. 1D TOCSY-TOCSY was applied to screen and identify thiodiglycol (TDG) in the complex mixtures, where TDG was a chemical subject to supervision and control and was used as the model compound.In the sample condition that the 1H signal of TDG was completely covered by 300-2000 times of background, only TDG was visible without any background in 1D TOCSY-TOCSY spectra. The limit of detection for TDG was 5 μg/mL when 256 scans were completed within 20 min. The limit of detection for TDG could reach 100 ng/mL when 8000 scans were acquired in 12 h. Compared with the traditional 1D TOCSY, 1D NOESY selective excitation and chemical shift selective filtering (CSSF) techniques, 1D TOCSY-TOCSY method showed outstanding selective detection capability. It was 20 times more sensitive than the existing 1D STEP-NOESY doubly selective excitation technique. This study provided a new analytical method for screening and identification of the trace chemicals subject to supervision and control in complex matrix samples and could be applied to other mixture analysis.
  • 加载中
    1. [1]

      ALFATTANI A, MARCOURT L, HOFSTETTER V, QUEIROZ E F, LEONI S, ALLARD P M, GINDRO K, STIEN D, PERRON K, WOLFENDER J L. Front. Mol. Biosci., 2021, 8:725691.

    2. [2]

      FORMISANO C, RIGANO D, LOPATRIELLO A, SIRIGNANO C, RAMASCHI G, ARNOLDI L, RIVA A, SARDONE N, TAGLIALATELA-SCAFATI O. J. Agric. Food Chem., 2019, 67(11):3159-3167.

    3. [3]

      KANIBAYASHI Y, TSUTSUMI Y, MIZUKOSHI T, YAMAGUCHI H. Jpn. Anal., 2020, 69(3):151-155.

    4. [4]

      BARJAT H, MORRIS G A, SMART S, SWANSON A G, WILLIAMS S C R. J.Magn. Reson., Ser B, 1995, 108(2):170-172.

    5. [5]

      SAKURAI S. J. Synth. Org. Chem., Jpn., 2014, 72(5):604-610.

    6. [6]

      CLARIDGE T D W. Chapter 10-Diffusion NMR Spectroscopy. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition). Boston:Elsevier, 2016:381-419.

    7. [7]

      DAY I J. Prog. Nucl. Magn. Reson. Spectrosc., 2020, 116:1-18.

    8. [8]

    9. [9]

      AKHMEDOV N G, GANNETT P M, WU B, CUMMINGS M M, TRAIN B C. Magn. Reson. Chem., 2013, 51(3):156-167.

    10. [10]

      HWANG T L, RONK M, MILNE J E. Magn. Reson. Chem., 2013, 51(2):89-94.

    11. [11]

      CLARIDGE T D W. Chapter 7-Correlations through the Chemical Bond II:Heteronuclear Shift Correlation. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition). Boston:Elsevier, 2016:243-294.

    12. [12]

    13. [13]

      MORRIS G A, FREEMAN R. J. Magn. Reson., 1978, 29(3):433-462.

    14. [14]

      KESSLER H, OSCHKINAT H, GRIESINGER C, BERMEL W. J. Magn. Reson., 1986, 70(1):106-133.

    15. [15]

      KONTAXIS G, STONEHOUSE J, LAUE E D, KEELER J. J. Magn. Reson., Ser. A, 1994, 111(1):70-76.

    16. [16]

      STONEHOUSE J, ADELL P, KEELER J, SHAKA A J. J. Am. Chem. Soc., 1994, 116(13):6037-6038.

    17. [17]

      STOTT K, STONEHOUSE J, KEELER J, HWANG T L, SHAKA A J. J. Am. Chem. Soc., 1995, 117(14):4199-4200.

    18. [18]

      DALVIT C. J. Magn. Reson., Ser. A, 1995, 113(1):120-123.

    19. [19]

      MACIAS F A, GUERRA J O, SIMONET A M, NOGUEIRAS C M. Magn. Reson. Chem., 2007, 45(7):615-620.

    20. [20]

      DEVKOTA K P, CHARAN R D, PRIEDEMANN C, DONOVAN R, SNYDER T M, RAMIREZ C, HARRIGAN G, MA G, PRAKASH I. Nat. Prod. Commun., 2019, 14(7):DOI, 10.1177/1934578X19862651.

    21. [21]

      KONTOGIANNI V G, PRIMIKYRI A, SAKKA M, GEROTHANASSIS I P. Magn. Reson. Chem., 2020, 58(3):232-244.

    22. [22]

      SCHIEVANO E, SBRIZZA M, ZUCCATO V, PIANA L, TESSARI M. Food Chem., 2020, 309:125788.

    23. [23]

      SCHIEVANO E, TONOLI M, RASTRELLI F. Anal. Chem., 2017, 89(24):13405-13414.

    24. [24]

      LUCIO-GUTIÉRREZ J R, DELGADO-MONTEMAYOR C, COELLO-BONILLA J, WAKSMAN-MINSKY N, SAUCEDO A L. Phytochem. Lett., 2019, 30:62-68.

    25. [25]

      LI F F, GUO C C, ZHANG Y L, WANG N, SHI Y, WANG S Q. Microchem. J., 2020, 153:104495.

    26. [26]

    27. [27]

      FREEMAN R. J. Mol. Struct., 1992, 266:39-51.

    28. [28]

      TOLMAN J R, PRESTEGARD J H. Concepts Magn. Reson., 1995, 7(4):247-262.

    29. [29]

      STOTT K, KEELER J, VAN Q N, SHAKA A J. J. Magn. Reson., 1997, 125(2):302-324.

    30. [30]

      ANTALEK B. Concepts Magn. Reson., 2002, 14(4):225-258.

    31. [31]

      CLARIDGE T D W. Chapter 5-Introducing Two-Dimensional and Pulsed Field Gradient NMR. In:Claridge T D W ed. High-Resolution NMR Techniques in Organic Chemistry (Third Edition) Boston:Elsevier, 2016:171-202.

    32. [32]

      MEYER J. Work Instruction for the Reporting of the Results of the OPCW Proficiency Tests (Quality Management System Document No. QDOC/LAB/SOP/PT04 Issue No. 3, Revision No. 1).

    33. [33]

      HALL L D, NORWOOD T J. J. Magn. Reson., 1988, 76(3):548-554.

    34. [34]

      HALL L D, NORWOOD T J. J. Magn. Reson., 1988, 78(3):582-587.

    35. [35]

      ROBINSON P T, PHAM T N, UHRIN D. J. Magn. Reson., 2004, 170(1):97-103.

    36. [36]

      UHRIN D, BARLOW P N. J. Magn. Reson., 1997, 126(2):248-255.

    37. [37]

      HU H T, BRADLEY S A, KRISHNAMURTHY K. J. Magn. Reson., 2004, 171(2):201-206.

  • 加载中
    1. [1]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Haolin Zhan Qiyuan Fang Jiawei Liu Xiaoqi Shi Xinyu Chen Yuqing Huang Zhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ. Acta Physico-Chimica Sinica, 2025, 41(2): 100017-. doi: 10.3866/PKU.WHXB202310045

    5. [5]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    6. [6]

      Hengwei Wei Liqiu Zhao Jiqiang Geng Xuebo Xu Yingpeng Ma Yuhao Liu Mingzhe Han Huan Jiao Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022

    7. [7]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(15)
  • Abstract views(790)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return