Citation: FENG Yan-Lin,  WANG Jian-Lin,  NING Xin,  CAO Ji-Min. Au@Ag Core-Shell Nanorods for Surface Enhanced Raman Scattering Imaging of Cancer Cells and in Vivo Cancer Spectroscopic Detection[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1196-1204. doi: 10.19756/j.issn.0253-3820.221016 shu

Au@Ag Core-Shell Nanorods for Surface Enhanced Raman Scattering Imaging of Cancer Cells and in Vivo Cancer Spectroscopic Detection

  • Corresponding author: CAO Ji-Min, caojimin@sxmu.edu.cn
  • Received Date: 11 January 2022
    Revised Date: 13 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22007063) and the Shanxi Medical Key Science and Technology Project Plan, China (No.2020XM01).

  • Surface enhanced Raman scattering (SERS) is a molecular specific hypersensitive spectroscopy technique. However, the existing SERS are mainly limited to extracorporeal sensing. Silver (Ag) material has become the mostly used SERS substrate because of its excellent surface plasmon resonance (SPR) characteristics. However, poor chemical stability and biocompatibility limit its biomedical applications. Therefore, optimizing the SPR activity and stability of Ag materials has become the research focus to broaden its application in vivo. In this study, Au@Ag core-shell nanorods (Au@Ag NRs) were synthesized by chemical deposition. The detection results of transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray element mapping (EDX) and X-ray diffraction (XRD) proved that Au@Ag NRs were successfully synthesized. Then, the near infrared Raman molecules of diethylthioacridine carbonyl iodine (DTTC) and mercaptopolyethylene glycol (PEG-SH) were coupled to Au@Ag NRs (pDAu@Ag NRs) to evaluate SERS properties both in vitro and in vivo. Ultraviolet visible spectrophotometer (UV-Vis) characterization revealed that pDAu@Ag NRs had good SPR characteristics in the near infrared region, resulting in good SERS properties in vitro. Inductively coupled plasma optical emission spectroscopy (ICP-OES) showed little dissociation of Ag ions, which was not enough to cause biological toxicity. MTS (3-(4,5-dimethylthiazole-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazole) test further confirmed that pDAu@Ag NRs had good biocompatibility, ensuring the safe application in vivo. Finally, pDAu@Ag NRs was used for Raman imaging of human breast cancer (MCF-7) cells and Raman biosensing in MCF-7 tumor-bearing mice. The results showed that Au@Ag NRs had excellent SERS imaging ability in MCF-7 cells and maintained high SERS activity on the tumor site. This technique may be helpful for early monitoring and spectroscopic diagnosis of breast cancer.
  • 加载中
    1. [1]

      VENDRELL M, MAITI K K, DHALIWAL K, CHANG Y T. Trends Biotechnol., 2013, 31(4):249-257.

    2. [2]

      CHAN S, KWON S, KOO T W, LEE L P, BERLIN A A. Adv. Mater., 2003, 15(19):1595-1598.

    3. [3]

      DOERING W E, NIE S. Anal. Chem., 2003, 75(22):6171-6176.

    4. [4]

      KIM H, BEACK S, HAN S, SHIN M, LEE T, PARK Y, KIM K S, YETISEN A K, YUN S H, KWON W, HAHN S K. Adv. Mater., 2018, 30(10):1701460.

    5. [5]

      LISMONT M, DREESEN L. Mater. Sci. Eng., C, 2012, 32(6):1437-1442.

    6. [6]

      BHARADWAJ P, NOVOTNY L. Opt. Express., 2007, 15(21):14266-14274.

    7. [7]

      RYCENGA M, COBLEY C M, ZENG J, LI W Y, MORAN C H, ZHANG Q, XIA Y N. Chem. Rev., 2011, 111(6):3669-3712.

    8. [8]

      YANG Y, LIU J Y, FU Z W, QIN D. J. Am. Chem. Soc., 2014, 136(23):8153-8156.

    9. [9]

      MOTT D M, ANH D N, SINGH P, SHANKAR C, MAENOSONO S. Adv. Colloid Interface Sci., 2012, 185:14-33.

    10. [10]

      SUN H Y, GUO X, YE W, KOU S F, YANG J. Nano Res., 2016, 9(4):1173-1181.

    11. [11]

      WATSON R E, HUDIS J, PERLMAN M L. Phys. Rev. B, 1971, 4(12):4139-4144.

    12. [12]

      DRUBE W, TREUSCH R, SHAM T K, BZOWSKI A, SOLDATOV A V. Phys. Rev. B, 1998, 58(11):6871-6876.

    13. [13]

      TYSON C C, BZOWSKI A, KRISTOF P, KUHN M, SAMMYNAIKEN R, SHAM T K. Phys. Rev. B, 1992, 45(16):8924-8928.

    14. [14]

      SINGH P, SHANKAR C, MOTT D, MAENOSONO S. Appl. Phys. Lett., 2011, 99(7):073107.

    15. [15]

      FENG Y L, CHANG Y, SUN X J, CHENG Y, ZHENG R X, WU X Q, WANG L, MA X M, LI X, ZHANG H Y. Biomater. Sci., 2019, 7(4):1448-1462.

    16. [16]

      GUO X, ZHANG Q, SUN Y H, ZHAO Q, YANG J. ACS Nano, 2012, 6(2):1165-1175.

    17. [17]

      YANG Y, SHI J L, KAWAMURA G, NOGAMI M. Scr. Mater., 2008, 58(10):862-865.

    18. [18]

      YIN Z, WANG Y, SONG C, ZHENG L, MA N, LIU X, LI S, LIN L, LI M, XU Y. J. Am. Chem. Soc., 2018, 140(3):864-867.

    19. [19]

      SIVAPALAN S T, DEVETTER B M, YANG T K, VAN DIJK T, SCHULMERICH M V, CARNEY P S. ACS Nano, 2013, 7(3):2099-2105.

    20. [20]

      FENG Y L, WANG G R, CHANG Y, CHENG Y, SUN B B, WANG L M, CHEN C Y, ZHANG H Y. Nano Lett., 2019, 19(7):4478-4489.

    21. [21]

      WANG L M, ZHANG T L, LI P Y, HUANG W X, TANG J L, WANG P Y, LIU J, YUAN Q X, BAI R, LI B, ZHANG K, ZHAO Y L, CHEN C Y. ACS Nano, 2015, 9(6):6532-6547.

    22. [22]

      CHOI O, CLEVENGER T E, DENG B, SURAMPALLI R Y, JR R L, HU Z. Water Res., 2009, 43(7):1879-1886.

    23. [23]

      XIU Z M, MA J, ALVAREZ P J J. Environ. Sci., 2011, 45(20):9003-9008.

    24. [24]

      GUO S T, HUANG L. J. Nanomater., 2011, 2011(1687):1-12.

    25. [25]

      BODELON G, MONTES G V, LOPEZ P V, HILL E H, HAMON C, SANZ M N. Nat. Mater., 2016, 15(11):1203-1211.

    26. [26]

      LI H, LIU H, QIN Y, MU Y, ZHANG X. Plasmonics, 2020, 15(6):2027-2032.

    27. [27]

      NTZIACHRISTOS V, BREMER C,WEISSLEDER R. Eur. J. Radiol., 2003, 13(1):195-208.

    28. [28]

      FANG J, NAKAMURA H, MAEDA H. Adv. Drug Delivery Rev., 2011, 63(3):136-151.

    29. [29]

      MAEDA H, WU J, SAWA T, MATSUMURA Y, HORI K. J. Controlled Release., 2000, 65(1):271-284.

    30. [30]

      WU N Z, DA D, RUDOLL T L, NEEDHAM D, WHORTON A R, DEWHIRST M W. Cancer Res., 1993, 53(16):3765-3770.

  • 加载中
    1. [1]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    5. [5]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    6. [6]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    17. [17]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    18. [18]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    19. [19]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(11)
  • Abstract views(651)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return