Citation: FENG Yan-Lin,  WANG Jian-Lin,  NING Xin,  CAO Ji-Min. Au@Ag Core-Shell Nanorods for Surface Enhanced Raman Scattering Imaging of Cancer Cells and in Vivo Cancer Spectroscopic Detection[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(8): 1196-1204. doi: 10.19756/j.issn.0253-3820.221016 shu

Au@Ag Core-Shell Nanorods for Surface Enhanced Raman Scattering Imaging of Cancer Cells and in Vivo Cancer Spectroscopic Detection

  • Corresponding author: CAO Ji-Min, caojimin@sxmu.edu.cn
  • Received Date: 11 January 2022
    Revised Date: 13 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22007063) and the Shanxi Medical Key Science and Technology Project Plan, China (No.2020XM01).

  • Surface enhanced Raman scattering (SERS) is a molecular specific hypersensitive spectroscopy technique. However, the existing SERS are mainly limited to extracorporeal sensing. Silver (Ag) material has become the mostly used SERS substrate because of its excellent surface plasmon resonance (SPR) characteristics. However, poor chemical stability and biocompatibility limit its biomedical applications. Therefore, optimizing the SPR activity and stability of Ag materials has become the research focus to broaden its application in vivo. In this study, Au@Ag core-shell nanorods (Au@Ag NRs) were synthesized by chemical deposition. The detection results of transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray element mapping (EDX) and X-ray diffraction (XRD) proved that Au@Ag NRs were successfully synthesized. Then, the near infrared Raman molecules of diethylthioacridine carbonyl iodine (DTTC) and mercaptopolyethylene glycol (PEG-SH) were coupled to Au@Ag NRs (pDAu@Ag NRs) to evaluate SERS properties both in vitro and in vivo. Ultraviolet visible spectrophotometer (UV-Vis) characterization revealed that pDAu@Ag NRs had good SPR characteristics in the near infrared region, resulting in good SERS properties in vitro. Inductively coupled plasma optical emission spectroscopy (ICP-OES) showed little dissociation of Ag ions, which was not enough to cause biological toxicity. MTS (3-(4,5-dimethylthiazole-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazole) test further confirmed that pDAu@Ag NRs had good biocompatibility, ensuring the safe application in vivo. Finally, pDAu@Ag NRs was used for Raman imaging of human breast cancer (MCF-7) cells and Raman biosensing in MCF-7 tumor-bearing mice. The results showed that Au@Ag NRs had excellent SERS imaging ability in MCF-7 cells and maintained high SERS activity on the tumor site. This technique may be helpful for early monitoring and spectroscopic diagnosis of breast cancer.
  • 加载中
    1. [1]

      VENDRELL M, MAITI K K, DHALIWAL K, CHANG Y T. Trends Biotechnol., 2013, 31(4):249-257.

    2. [2]

      CHAN S, KWON S, KOO T W, LEE L P, BERLIN A A. Adv. Mater., 2003, 15(19):1595-1598.

    3. [3]

      DOERING W E, NIE S. Anal. Chem., 2003, 75(22):6171-6176.

    4. [4]

      KIM H, BEACK S, HAN S, SHIN M, LEE T, PARK Y, KIM K S, YETISEN A K, YUN S H, KWON W, HAHN S K. Adv. Mater., 2018, 30(10):1701460.

    5. [5]

      LISMONT M, DREESEN L. Mater. Sci. Eng., C, 2012, 32(6):1437-1442.

    6. [6]

      BHARADWAJ P, NOVOTNY L. Opt. Express., 2007, 15(21):14266-14274.

    7. [7]

      RYCENGA M, COBLEY C M, ZENG J, LI W Y, MORAN C H, ZHANG Q, XIA Y N. Chem. Rev., 2011, 111(6):3669-3712.

    8. [8]

      YANG Y, LIU J Y, FU Z W, QIN D. J. Am. Chem. Soc., 2014, 136(23):8153-8156.

    9. [9]

      MOTT D M, ANH D N, SINGH P, SHANKAR C, MAENOSONO S. Adv. Colloid Interface Sci., 2012, 185:14-33.

    10. [10]

      SUN H Y, GUO X, YE W, KOU S F, YANG J. Nano Res., 2016, 9(4):1173-1181.

    11. [11]

      WATSON R E, HUDIS J, PERLMAN M L. Phys. Rev. B, 1971, 4(12):4139-4144.

    12. [12]

      DRUBE W, TREUSCH R, SHAM T K, BZOWSKI A, SOLDATOV A V. Phys. Rev. B, 1998, 58(11):6871-6876.

    13. [13]

      TYSON C C, BZOWSKI A, KRISTOF P, KUHN M, SAMMYNAIKEN R, SHAM T K. Phys. Rev. B, 1992, 45(16):8924-8928.

    14. [14]

      SINGH P, SHANKAR C, MOTT D, MAENOSONO S. Appl. Phys. Lett., 2011, 99(7):073107.

    15. [15]

      FENG Y L, CHANG Y, SUN X J, CHENG Y, ZHENG R X, WU X Q, WANG L, MA X M, LI X, ZHANG H Y. Biomater. Sci., 2019, 7(4):1448-1462.

    16. [16]

      GUO X, ZHANG Q, SUN Y H, ZHAO Q, YANG J. ACS Nano, 2012, 6(2):1165-1175.

    17. [17]

      YANG Y, SHI J L, KAWAMURA G, NOGAMI M. Scr. Mater., 2008, 58(10):862-865.

    18. [18]

      YIN Z, WANG Y, SONG C, ZHENG L, MA N, LIU X, LI S, LIN L, LI M, XU Y. J. Am. Chem. Soc., 2018, 140(3):864-867.

    19. [19]

      SIVAPALAN S T, DEVETTER B M, YANG T K, VAN DIJK T, SCHULMERICH M V, CARNEY P S. ACS Nano, 2013, 7(3):2099-2105.

    20. [20]

      FENG Y L, WANG G R, CHANG Y, CHENG Y, SUN B B, WANG L M, CHEN C Y, ZHANG H Y. Nano Lett., 2019, 19(7):4478-4489.

    21. [21]

      WANG L M, ZHANG T L, LI P Y, HUANG W X, TANG J L, WANG P Y, LIU J, YUAN Q X, BAI R, LI B, ZHANG K, ZHAO Y L, CHEN C Y. ACS Nano, 2015, 9(6):6532-6547.

    22. [22]

      CHOI O, CLEVENGER T E, DENG B, SURAMPALLI R Y, JR R L, HU Z. Water Res., 2009, 43(7):1879-1886.

    23. [23]

      XIU Z M, MA J, ALVAREZ P J J. Environ. Sci., 2011, 45(20):9003-9008.

    24. [24]

      GUO S T, HUANG L. J. Nanomater., 2011, 2011(1687):1-12.

    25. [25]

      BODELON G, MONTES G V, LOPEZ P V, HILL E H, HAMON C, SANZ M N. Nat. Mater., 2016, 15(11):1203-1211.

    26. [26]

      LI H, LIU H, QIN Y, MU Y, ZHANG X. Plasmonics, 2020, 15(6):2027-2032.

    27. [27]

      NTZIACHRISTOS V, BREMER C,WEISSLEDER R. Eur. J. Radiol., 2003, 13(1):195-208.

    28. [28]

      FANG J, NAKAMURA H, MAEDA H. Adv. Drug Delivery Rev., 2011, 63(3):136-151.

    29. [29]

      MAEDA H, WU J, SAWA T, MATSUMURA Y, HORI K. J. Controlled Release., 2000, 65(1):271-284.

    30. [30]

      WU N Z, DA D, RUDOLL T L, NEEDHAM D, WHORTON A R, DEWHIRST M W. Cancer Res., 1993, 53(16):3765-3770.

  • 加载中
    1. [1]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    11. [11]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(12)
  • Abstract views(957)
  • HTML views(206)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return