Citation: YANG Jian-Ping,  ZHU Cai-Jun,  LI Qiu-Na,  CHEN Hua-Ying,  HUANG Zhi-Xuan,  LIU Zhi-Kang,  LIANG Xiao,  LIANG Nan-Feng. A Novel Method for Screening α-Glycosidase Inhibitors Based on Nickel-based Nanomaterial Electrochemical Sensor[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(3): 373-382. doi: 10.19756/j.issn.0253-3820.221006 shu

A Novel Method for Screening α-Glycosidase Inhibitors Based on Nickel-based Nanomaterial Electrochemical Sensor

  • Corresponding author: YANG Jian-Ping, yangjianping@gdei.edu.cn
  • Received Date: 3 January 2022
    Revised Date: 16 February 2023

    Fund Project: Supported by the Science and Technology Program of Guangzhou City, China (No. 202002030444), the Special Projects in Key Fields of Education Department of Guangdong Province, China (No.2022ZDZX4037), the Science and Technology Innovation Climbing Program of Guangdong Province, China (No. pdjh2021a0364) and College Students′ Innovation and Entrepreneurship Project (Nos. 202214278010, 202214278082).

  • To establish a novel and simple method for screening glycosidase inhibitors from traditional Chinese medicine, a nickel-based nanomaterial modified electrode (Ni(OH)2/NF) was prepared on nickel foam (NF) in one step by multi-cycle electrochemical cyclic voltammetry, which was used to construct a highly sensitive and selective electrochemical sensor for evaluating the inhibitory activity of α-glycosidase inhibitors. The structure and surface morphology of the modified electrode were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and its sensing performance was investigated by cyclic voltammetry and chronoamperometry. The results showed that the Ni(OH)2/NF sensor had a high electrochemical response to glucose in complex enzyme reaction system, and the sensitivity was 3222 μA·mmol/(L·cm2) in the linear range of 3.0-6000 μmol/L, with a detection limit as low as 0.9 μmol/L (S/N = 3). The feasibility of the sensor for detecting α-glycosidase activity was verified by a clinical hypoglycemic drug acarbose. The nanosensor was also applied to evaluate the inhibitory effect of lotus stamen extract. It was found that lotus stamen had a certain α-glycosidase inhibitory activity, with its half inhibition concentration IC50 = 3.31 g/L. The experimental results showed that the developed sensor was suitable for analysis of α-glycosidase inhibitory activity, providing a novel method for screening natural hypoglycemic chemicals.
  • 加载中
    1. [1]

      TANG C, QIAN Z, QIAN Y, HUANG Y, ZHAO M, AO H, FENG H. Sens. Actuators, B, 2017, 245:282-289.

    2. [2]

      LIU D M, DONG C, MA R T. Colloids Surf. B, 2021, 197:111400.

    3. [3]

      SHI M, CEN Y, XU G, WEI F, XU X, CHENG X, CHAI Y, SOHAIL M, HU Q. Anal. Chim. Acta, 2019, 1077:225-231.

    4. [4]

      HEDRINGTON M S, DAVIS S N. Expert Opin. Pharmacother., 2019, 20(18):2229-2235.

    5. [5]

      TAN K, TESAR C, WILTON R, JEDRZEJCZAK R P, JOACHIMIAK A. Protein Sci., 2018, 27(8):1498-1508.

    6. [6]

      ZHANG M, YANG R, YU S, ZHAO W. Int. J. Food Sci. Technol., 2022, 57(1):67-77.

    7. [7]

    8. [8]

      DEVECI E, ÇAYAN F, TEL-ÇAYAN G, DURU M E. S. Afr. J. Bot., 2021, 137:19-23.

    9. [9]

      WU X, QIU B, CHEN Y, SHI Y, ZHU J, LIU X, ZHAO D. J. Chromatogr. B, 2020, 1159:122398.

    10. [10]

      LANDA-CANSIGNO C, HERNÁNDEZ-DOMÍNGUEZ E E, MONRIBOT-VILLANUEVA J L, LICEA-NAVARRO A F, MATEO-CID L E, SEGURA-CABRERA A, GUERRERO-ANALCO J A. Algal Res., 2020, 49:101954.

    11. [11]

      WANG S, XIE X, ZHANG L, HU Y, WANG H, TU Z. Ind. Crop. Prod., 2020, 143:111941.

    12. [12]

      LIU J, GUO Y, ZHANG J, QI Y, JIA X, GAO G, SHUAI J, LIU H, ZHANG B, XIAO P. Phytomedicine, 2014, 21(13):1753-1758.

    13. [13]

      PEI H, SU W, GUI M, DOU M, ZHANG Y, WANG C, LU D. Molecules, 2021, 26(7):1855.

    14. [14]

      CHEN G Y, ZHANG H, YANG F Q. Anal. Chim. Acta, 2021, 1142:19-27.

    15. [15]

      TIAN T, CHEN G Y, ZHANG H, YANG F Q. Molecules, 2021, 26(15):4638.

    16. [16]

      WANG X L, JIAO F R, YU M, LIN L B, XIAO J, ZHANG Q, WANG L, DUAN D Z, XIE G. Bioorg. Med. Chem. Lett., 2017, 27(9):1993-1998.

    17. [17]

      ZHANG X, LI G, WU D, YU Y, HU N, WANG H, LI X, WU Y. Food Funct., 2020, 11(1):66-82.

    18. [18]

    19. [19]

    20. [20]

      XIE W, YANG G, XU M, BO X. New J. Chem., 2020, 42(6):3963.

    21. [21]

      DONG Q, RYU H, LEI Y. Electrochim. Acta, 2021, 370:137744.

    22. [22]

      REN Z, MAO H, LUO H, DENG X, LIU Y. Nanotechnology, 2020, 31(18):185501.

    23. [23]

      CHANDRASEKARAN N I, HARSHINY M, THANGASAMY P, MATHESWARAN M. Appl. Phys. A, 2021, 127(1):20.

    24. [24]

      GUO S, ZHANG C, YANG M, ZHOU Y, BI C, LV Q, MA N. Anal. Chim. Acta, 2020, 1109:130-139.

    25. [25]

      ELAKKIYA R, MATHANKUMAR S, MADURAIVEERAN G. Mater. Chem. Phys., 2021, 269:124770.

    26. [26]

      ARIVAZHAGAN M, MANOVA SANTHOSH Y, MADURAIVEERAN G. Micromachines, 2021, 12(4):403.

    27. [27]

      ZHANG Y, ZHENG D, LIU S, QIN S, SUN X, WANG Z, QIN C, LI Y, ZHOU J. Appl. Surf. Sci., 2021, 552:149529.

    28. [28]

      GAO X, FENG W, ZHU Z, WU Z, LI S, KAN S, QIU X, GUO A, CHEN W, YIN K. Adv. Mater. Interfaces, 2021, 8(7):2002133.

    29. [29]

      MARINI S, BEN MANSOUR N, HJIRI M, DHAHRI R, EL MIR L, ESPRO C, BONAVITA A, GALVAGNO S, NERI G, LEONARDI S G. Electroanalysis, 2018, 30(4):727-733.

    30. [30]

      SUN S, SHI N, LIAO X, ZHANG B, YIN G, HUANG Z, CHEN X, PU X. Appl. Surf. Sci., 2020, 529:147067.

    31. [31]

      ZHANG J, GONG W, YIN H, WANG D, ZHANG Y, ZHANG H, WANG G, ZHAO H. ChemSusChem, 2021, 14(14):2935-2942.

    32. [32]

      YUAN G, WANG L, ZHANG X, WANG Q. J. Colloid Interface Sci., 2019, 536:189-195.

    33. [33]

      KUNG C W, CHENG Y H, HO K C. Sens. Actuators, B, 2014, 204:159-166.

    34. [34]

      ZHAO Y, GU G, YOU S, JI R, SUO H, ZHAO C, LIU F. RSC Adv., 2015, 5(66):53665-53670.

    35. [35]

      LI G, WANG X, LIU L, LIU R, SHEN F, CUI Z, CHEN W, ZHANG T. Small, 2015, 11(6):731-739.

    36. [36]

      LIU D, CHEN J, SHI Y. Talanta, 2017, 164:548-555.

    37. [37]

    38. [38]

      LIU Y, LI H, LU L, SUN B, HUANG L, CHEN H, QIU W, TAO J, ZHAO P. J. Electrochem. Soc., 2019, 166(2):B133-B140.

  • 加载中
    1. [1]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    2. [2]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    15. [15]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    16. [16]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

Metrics
  • PDF Downloads(6)
  • Abstract views(1290)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return