Citation: YANG Zhan,  XU Bin,  CHEN Jia,  WU Jian-Feng,  HE Yue-Zhong,  XIE Jian-Wei. Identification of Some Novel Damage Biomarkers of Sulfur Mustard by High Resolution Mass Spectrometry in Vitro[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1733-1742. doi: 10.19756/j.issn.0253-3820.211256 shu

Identification of Some Novel Damage Biomarkers of Sulfur Mustard by High Resolution Mass Spectrometry in Vitro

  • Corresponding author: WU Jian-Feng, ammswjf@163.com
  • Received Date: 28 March 2021
    Revised Date: 2 June 2021

    Fund Project: Supported by the National Key Research and Development Program of China(Nos.2018YFC1602600, 2020YFF0305000).

  • Sulfur mustard (SM) is a typically representative alkylating agent with high reactivity. SM can produce a variety of hydrolytic and oxidative metabolites including various proteins and nucleic acid adducts. Among them, divinyl sulfone (DVS) is an important oxidative metabolite that should be paid more attention, which has high reactivity and toxicity close to SM. In this study, the human serum albumin (HSA) and human plasma were exposed to DVS and its two-phase metabolite DVS-GSH, respectively. After digestion with proteinase K and purification by solid phase extraction (SPE), UPLC-Q-extractive orbitrap high rosolution mass spectrometry (HRMS) was used to identify some albumin adducts. According to the analysis results, three novel biomarkers, DVS-Cys-Pro-Phe, Phe-Pro-Cys-DVS-Cys-Pro-Phe and GSH-DVS-Cys-Pro-Phe, were successfully identified by UPLC-Q-exactive orbitrap/HRMS. The results showed that both DVS and DVS-GSH could react with Cys-34 of albumin due to their highly reactive alkene bonds. These novel damage biomarkers not only provided new clues for SM exposure and diagnosis, but also provided evidence for elucidating the damage mechanism of SM from a new perspective.
  • 加载中
    1. [1]

      PANAHI Y, ABDOLGHAFFARI A H, SAHEBKAR A. J. Cell. Biochem., 2018, 119(1):197-206.

    2. [2]

      TAEBI G, SOROUSH M, MODIRIAN E, KHATERI S, MOUSAVI B Z. Ganjparvar. Iran. J. War Public Health, 2015, 7(2):115-121.

    3. [3]

      JIANG A, MAIBACH H. J. Appl. Toxicol., 2018, 38(1):108-112.

    4. [4]

      CZUB M, NAWALA J, POPIEL S, DZIEDZIC D, BRZEZINSKI T, MASZCZYK P, SANDERSON H, FABISIAK J, BELDOWSKI J, KOTWICKI L. Mar. Environ. Res., 2020, 161:105077.

    5. [5]

      QI M, XU B, WU J, ZHANG Y, ZONG C, CHEN J, GUO L, XIE J. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2016, 1028:42-50.

    6. [6]

      OHEIX E, GRAVEL E, DORIS E. Chemistry, 2021, 27(1):54-68.

    7. [7]

      LV S, ZHANG Y, XU B, XU H, ZHAO Y, CHEN J, GAO Z, WU J, XIE J. Chem. Res. Toxicol., 2017, 30(10):1874-1882.

    8. [8]

      POPIEL S, NAWAŁA J, DZIEDZIC D, GORDON D, DAWIDZIUK B. Int. J. Chem. Kinet., 2018, 50(2):75-89.

    9. [9]

      FORD-MOORE A H. J. Chem. Soc., 1949, 512:2433-2440.

    10. [10]

      WEST J, STAMM C E, BROWN H A, JUSTICE S L, MORANO K A. Chem. Res. Toxicol., 2011, 24(9):1457-1459.

    11. [11]

      WANG P, ZHANG Y, CHEN J, GUO L, XU B, WANG L, XU H, XIE J. Chem. Res. Toxicol., 2015, 28(6):1224-1233.

    12. [12]

      ANSLOW W P, KARNOFSKY D A, VAL JAGER B, SMITH H W. J. Pharmacol. Exp. Ther., 1948, 93(1):1-9.

    13. [13]

      SANTA CRUZ BIOTECHNOLOGY Inc. Divinyl Sulfone (MSDS no. sc-255120). In:Biotechnology S C ed. Safty Data Sheeted. Heidelberg:Germany, 2017:7.

    14. [14]

      DOS SANTOS J C S, RUEDA N, BARBOSA O, MILLÁN-LINARES M D C, PEDROCHE J, YUSTE M D, GONÇALVES L R B, FERNANDEZ-LAFUENTE R. J. Mol. Catal. B:Enzym., 2015, 117:38-44.

    15. [15]

      DOS SANTOS J C S, RUEDA N, TORRES R, BARBOSA O, GONÇALVES L R B, FERNANDEZ-LAFUENTE R. Process Biochem., 2015, 50(6):918-927.

    16. [16]

      MORALES-SANFRUTOS J, LOPEZ-JARAMILLO J, ORTEGA-MUÑOZ M, MEGIA-FERNANDEZ A, PEREZ-BALDERAS F, HERNANDEZ-MATEO F, SANTOYO-GONZALEZ F. Org. Biomol. Chem., 2010, 8(3):667-675.

    17. [17]

      BELLAART A C. Phosphorus Sulfur Relat. Elem., 2007, 6(1-2):33-34.

    18. [18]

      CHENG X, LIU C, YANG Y, LIANG L, CHEN B, YU H, XIA J, LIU S, LI Y. Toxicol. Lett., 2021, 344:46-57.

    19. [19]

      JOHN H, WILLOH S, HORMANN P, SIEGERT M, VONDRAN A, THIERMANN H. Anal. Chem., 2016, 88(17):8787-8794.

    20. [20]

      JOHN H, SIEGERT M, GANDOR F, GAWLIK M, KRANAWETVOGL A, KARAGHIOSOFF K, THIERMANN H. Toxicol. Lett., 2016, 244:103-111.

    21. [21]

      PANTAZIDES B G. CROW B S, GARTON J W, QUINONES-GONZALEZ J A, BLAKE T A, THOMAS J D, JOHNSON R C. Chem. Res. Toxicol., 2015, 28(2):256-261.

    22. [22]

      LIU C, LIANG L, XIANG Y, YU H, ZHOU S, XI H, LIU S, LIU J. Anal. Bioanal. Chem., 2015, 407(23):7037-7046.

    23. [23]

      GANDOR F, GAWLIK M, THIERMANN H, JOHN H. J. Anal. Toxicol., 2015, 39(4):270-279.

    24. [24]

    25. [25]

      NOORT D, HULST A G, JANSEN R. Arch. Toxicol., 2002, 76(2):83-88.

    26. [26]

      OWEN J B, BUTTERFIELD D A. Methods Mol. Biol., 2010, 648:269-277.

    27. [27]

      YU Y, CHAU Y. Biomacromolecules, 2012, 13(3):937-942.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    4. [4]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(7)
  • Abstract views(522)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return