Citation: ZHANG Zi-Chao,  LIU Zhi-Rong,  WAN Xing-Yi,  LI Lin-Lin. Research Progress of Chemical Sensors Based on Triboelectric Nanogenerators[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1419-1427. doi: 10.19756/j.issn.0253-3820.211247 shu

Research Progress of Chemical Sensors Based on Triboelectric Nanogenerators

  • Corresponding author: LI Lin-Lin, lilinlin@binn.cas.cn
  • Received Date: 23 March 2021
    Revised Date: 9 April 2021

    Fund Project: Supported by the National Key R&D Project from Minister of Science and Technology, China (No.2016YFA0202703) and the National Nature Science Foundation of China (No.82072065).

  • Triboelectric nanogenerator (TENG) technology is very important for the rapid development of the intelligent Internet of Things. It can effectively convert mechanical stress into electrical signals or electricity without any additional power supply. Therefore, it has broad prospection in the field of sensors and self-powered detection systems. TENG is characterized by good material compatibility, simple assembly requirements and flexible structure, which effectively promotes their applications in the fields of biomedical, intelligent transportation and chemical sensing. TENG is one of the most promising kind of sensors for commercial application at present. In this paper, the working principle of TENG and its latest research progresses in chemical sensors are introduced. Besides, the challenges for the development of TENG technology in chemical sensors are further discussed.
  • 加载中
    1. [1]

      WANG S, LIN L, WANG Z L. Nano Energy, 2015, 11:436-462.

    2. [2]

      FAN F R, TIAN Z Q, WANG Z L. Nano Energy, 2012, 1(2):328-334.

    3. [3]

      FAN Y J, MENG X S, LI H Y, KUANG S Y, ZHANG L, WU Y, WANG Z L, ZHU G. Adv. Mater., 2017, 29(2):1603115.

    4. [4]

      HAN C B, ZHANG C, TANG W, LI X H, WANG Z L. Nano Res., 2015, 8(3):722-730.

    5. [5]

      HE X, ZI Y L, YU H, ZHANG S L, WANG J, DING W B, ZOU H Y, ZHANG W, LU C H, WANG Z L. Nano Energy, 2017, 39:328-336.

    6. [6]

      LI T, XU Y, WILLANDER M, XING F, CAO X, WANG N, WANG Z L. Adv. Funct. Mater., 2016, 26(24):4370-4376.

    7. [7]

      LI W, TORRES D, DIAZ R, WANG Z J, WU C S, WANG C, WANG Z L, SEPULVEDA N. Nat. Commun., 2017, 8:15310.

    8. [8]

      LIU Z R, NIE J H, MIAO B, LI J D, CUI Y B, WANG S, ZHANG X D, ZHAO G R, DENG Y B, WU Y H, LI Z, LI L L, WANG Z L. Adv. Mater., 2019, 31(12):1807795.

    9. [9]

      LIU Z R, LIANG X, LIU H H, WANG Z, JIANG T, CHENG Y Y, WU M Q, XIANG D L, LI Z, WANG Z L, LI L L. ACS Nano, 2020, 14(11):15458-15467.

    10. [10]

      ZHENG Q, JIN Y M, LIU Z, OUYANG H, LI H, SHI B J, JIANG W, ZHANG H, LI Z, WANG Z L. ACS Appl. Mater. Interfaces, 2016, 8(40):26697-26703.

    11. [11]

      TANG W, TIAN J J, ZHENG Q, YAN L, WANG J X, LI Z, WANG Z L. ACS Nano, 2015, 9(8):7867-7873.

    12. [12]

      LIN Z M, CHEN J, LI X S, ZHOU Z H, MENG K Y, WEI W, YANG J, WANG Z L. ACS Nano, 2017, 11(9):8830-8837.

    13. [13]

      LIN L, XIE Y, WANG S, WU W, NIU S, WEN X, WANG Z L. ACS Nano, 2013, 7(9):8266-8274.

    14. [14]

      LUO J, FAN F R, ZHOU T, TANG W, XUE F, WANG Z L. Extreme Mech. Lett., 2015, 2:28-36.

    15. [15]

      WANG X D, ZHANG H L, DONG L, HAN X, DU W M, ZHAI J Y, PAN C F, WANG Z L. Adv. Mater., 2016, 28(15):2896-2903.

    16. [16]

      PARK S, KIM H, VOSGUERITCHIAN M, CHEON S, KIM H, KOO J H, KIM T R, LEE S, SCHWARTZ G, CHANG H, BAO Z A. Adv. Mater., 2014, 26(43):7324-7332.

    17. [17]

      PANG Y K, LI J, ZHOU T, YANG Z W, LUO J J, ZHANG L M, DONG G F, ZHANG C, WANG Z L. Nano Energy, 2017, 31:533-540.

    18. [18]

      LUO J J, TANG W, FAN F R, LIU C F, PANG Y K, CAO G Z, WANG Z L. ACS Nano, 2016, 10(8):8078-8086.

    19. [19]

      PANG Y K, LI X H, CHEN M X, HAN C B, ZHANG C, WANG Z L. ACS Appl. Mater. Interfaces, 2015, 7(34):19076-19082.

    20. [20]

      WU Z Y, ZHANG B B, ZOU H Y, LIN Z M, LIU G L, WANG Z L. Adv. Energy Mater., 2019, 9(33):1901124.

    21. [21]

      YU A F, CHEN X Y, WANG R, LIU J Y, LUO J J, CHEN L B, ZHANG Y, WU W, LIU C H, YUAN H T, PENG M Z, HU W G, ZHAI J Y, WANG Z L. ACS Nano, 2016, 10(4):3944-3950.

    22. [22]

      SU L, ZHAO Z X, LI H Y, YUAN J, WANG Z L, CAO G Z, ZHU G. ACS Nano, 2015, 9(11):11310-11316.

    23. [23]

      LI Z L, CHEN J, ZHOU J J, ZHENG L, PRADEL K C, FAN X, GUO H Y, WEN Z, YEH M H, YU C W, WANG Z L. Nano Energy, 2016, 22:548-557.

    24. [24]

      CHEN J, WANG Z L. Joule, 2017, 1(3):480-521.

    25. [25]

      HA M, PARK J, LEE Y, KO H. ACS Nano, 2015, 9(4):3421-3427.

    26. [26]

      ZI Y L, WANG Z L. APL Mater., 2017, 5(7):074103.

    27. [27]

      SUTTON M A, DRAGOSITS U, TANG Y S, FOWLER D. Atmos. Environ., 2000, 34(6):855-869.

    28. [28]

      GLENCROSS D A, HO T R, CAMI A N, HAWRYLOWICZ C M, PFEFFER P E. Free Radic. Biol. Med., 2020, 151:56-68.

    29. [29]

      MAHAJAN S, JAGTAP S. Appl. Mater. Today, 2020, 18:100483.

    30. [30]

      ZHANG Z, XUE T, JIN X. Sci. Total Environ., 2020, 741:140244.

    31. [31]

    32. [32]

      SHAN G, LI X, HUANG W. The Innovation, 2020, 1(2):100031.

    33. [33]

      PU X, GUO H, CHEN J, WANG X, XI Y, HU C, WANG Z L. Sci. Adv., 2017, 3(7):e1700694.

    34. [34]

      XUE X Y, FU Y M, WANG Q, XING L L, ZHANG Y. Adv. Funct. Mater., 2016, 26(18):3128-3138.

    35. [35]

    36. [36]

      MAJHI S M, MIRZAEI A, KIM H W, KIM S S, KIM T W. Nano Energy, 2021, 79:105369.

    37. [37]

      ZHANG H, LIU F, PHANIKUMAR M S, MEERSCHAERT M M. Comput. Math. Appl., 2013, 66(5):693-701.

    38. [38]

      KIM J H, CHUN J, KIM J W, CHOI W J, BAIK J M. Adv. Funct. Mater., 2015, 25(45):7049-7055.

    39. [39]

      UDDIN A, CHUNG G S. Sens. Actuators, B, 2016, 231:601-608.

    40. [40]

      SHEN Q Q, XIE X K, PENG M F, SUN N, SHAO H Y, ZHENG H C, WEN Z, SUN X H. Adv. Funct. Mater., 2018, 28(10):1703420.

    41. [41]

      GNTNER A T, RIGHETTONI M, PRATSINIS S E. Sens. Actuators, B, 2016, 223:266-273.

    42. [42]

      WANG S, XIE G Z, TAI H L, SU Y J, YANG B X, ZHANG Q P, DU X S, JIANG Y D. Nano Energy, 2018, 51:231-240.

    43. [43]

      LIU Y, ZHENG Y, WU Z, ZHANG L, SUN W, LI T, WANG D, ZHOU F. Nano Energy, 2021, 79:105422.

    44. [44]

      ISLAM M S, TANAKA M. Mar. Pollut. Bull., 2004, 48(7-8):624-649.

    45. [45]

      CHEEVAPORN V, MENASVETA P. Mar. Pollut. Bull., 2003, 47(1):43-51.

    46. [46]

      LIU X, PANG H, LIU X, LI Q, ZHANG N, MAO L, QIU M, HU B, YANG H, WANG X. The Innovation, 2021, 2(1):100076.

    47. [47]

      QIN Y, ALAM A U, PAN S, HOWLADER M M R, GHOSH R, HU N X, JIN H, DONG S, CHEN C H, DEEN M J. Sens. Actuators, B, 2018, 255:781-790.

    48. [48]

      MAITY A, SUI X, TARMAN C R, PU H, CHANG J, ZHOU G, REN R, MAO S, CHEN J. ACS Sens., 2017, 2(11):1653-1661.

    49. [49]

      ZHAO T, HE J, WANG X, MA B, WANG X, ZHANG L, LI P, LIU N, LU J, ZHANG X. J. Pharmaceut. Biomed., 2014, 98:311-320.

    50. [50]

      MUKTHAR ALI M, SANDHYA K Y. Carbon, 2014, 70:249-257.

    51. [51]

      LI H, CHEN Y, ZHANG Y, HAN W, SUN X, LI J, WANG L. J. Electroanal. Chem., 2013, 689:193-200.

    52. [52]

      MA W, CHENG Z, GAO Z, WANG R, WANG B, SUN Q. Chem. Eng. J., 2014, 241:167-174.

    53. [53]

      LIN Z H, ZHU G, ZHOU Y S, YANG Y, BAI P, CHEN J, WANG Z L. Angew. Chem., Int. Ed.,2013, 52(19):5065-5069.

    54. [54]

      LI Z L, CHEN J, YANG J, SU Y J, FAN X, WU Y, YU C W, WANG Z L. Energy Environ. Sci., 2015, 8(3):887-896.

    55. [55]

      CHEN B D, TANG W, HE C, JIANG T, XU L, ZHU L P, GU G Q, CHEN J, SHAO J J, LUO J J, WANG Z L. Adv. Mater. Technol., 2018, 3(1):1700229.

    56. [56]

      BAI Y, XU L, HE C, ZHU L P, YANG X D, JIANG T, NIE J H, ZHONG W, WANG Z L. Nano Energy, 2019, 66:104117.

    57. [57]

      JIE Y, WANG N, CAO X, XU Y, LI T, ZHANG X J, WANG Z L. ACS Nano, 2015, 9(8):8376-8383.

  • 加载中
    1. [1]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    3. [3]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    12. [12]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    15. [15]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    16. [16]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    17. [17]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(13)
  • Abstract views(739)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return