Citation: MIN Pan,  ZHENG De-Ze,  CHE Wan-Meng,  XING Yue,  WU Jing. Design and Synthesis of A β-Diketonate-Europium(Ⅲ) Complex-based Fluorescent Probe for Nitric Oxide Detection and Its Application in Bioimaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1704-1712. doi: 10.19756/j.issn.0253-3820.211233 shu

Design and Synthesis of A β-Diketonate-Europium(Ⅲ) Complex-based Fluorescent Probe for Nitric Oxide Detection and Its Application in Bioimaging

  • Corresponding author: WU Jing, wujing@lnnu.edu.cn
  • Received Date: 19 March 2021
    Revised Date: 3 August 2021

    Fund Project: Supported by the Undergraduate Training Programs for Innovation and Entrepreneurship of Liaoning Province (No.201910165118).

  • By using NO-recognizable o-diaminophenyl-substituted terpyridine derivative ligand 4-(4-[(2,2':6',2″-terpyridin)-4'-yl]phenoxy)benzene-1,2-diamine (TPBD) as the ligand, and β-diketone 6-(1',1″-diphenyl-4'-yl)-1,1,1,2,2,3,3-heptafluoro-4,6-hexanedione (DHH) as the coligand, a new β-diketonate-Eu3+ complex-based fluorescent probe,[Eu(DHH)3(TPBD)], was designed and synthesized for detection of NO, and its structure was characterized by mass spectrum and elemental analysis methods. The spectral results indicated that the probe[Eu(DHH)3(TPBD)] had only weak fluorescence, and its fluorescence intensity was increased by nearly 10 times after reacting with NO. The probe could be used to quantitatively detect NO at concentrations ranging from 0.017-0.83 μmol/L with a detection limit of 7.4 nmol/L. Meanwhile,[Eu(DHH)3(TPBD)] showed approximately no response to other common reactive oxygen/nitrogen species, which demonstrated the good NO sensitivity of the probe. The fluorescence imaging experiments proved that the probe[Eu(DHH)3(TPBD)] had low cytotoxicity and mitochondria targetability, and was successfully applied to the time-gated fluorescence imaging of NO in living cells and zebrafish.
  • 加载中
    1. [1]

      SNYDERS H. J. Science, 1992, 257(5069):494-496.

    2. [2]

      JASID S, SIMONTACCHI M, BARTOLI C G, PUNTARULO S. Plant Physiol., 2006, 142(3):1246-1255.

    3. [3]

      MONCADA S, HIGGS A N. J. N. Engl. J. Med., 1993, 329(27):2002-2012.

    4. [4]

      ESCH T, STEFANO G B, FRICCHIONE G L, BENSON H. J. Med. Sci. Monit., 2002, 8(6):103-118.

    5. [5]

      MIYASAKA N, HIRATA Y. J. Cell. Mol. Life Sci., 1997, 61(21):2073-2081.

    6. [6]

      NUSSLER A K, BILLIAR T R. J. Leukocyte Biol., 1993, 54(2):171-178.

    7. [7]

      PACHER P, BECKMAN J S, LIAUDET L. J. Physiol. Rev., 2007, 87(1):315-424.

    8. [8]

      YOSHIMURA T, YOKOYAMA H, FUJII S, TAKAYAMA F, OIKAWA K, KAMADA H. J. Nat. Biotechnol., 1996, 14(8):992-994.

    9. [9]

      HOFSETH L J, HUSSAIN S P, WOGAN G N, HARRIS C C. J. Free Radic. Biol. Med., 2003, 34(8):955-968.

    10. [10]

      CALS-GRIERSON M M, ORMEROD A D. Nitric Oxide-Biol. Chem., 2004, 10(4):179-193.

    11. [11]

      MONCADA S, PALMER R M, HIGGS E A. J. Pharmacol. Rev., 1991, 43(2):109-142.

    12. [12]

      MOROZ L L, DAHLGREN R L, BOUDKO D, SWEEDLER J V, LOVELL P. J. Inorg. Biochem., 2005, 99(4):929-939.

    13. [13]

      LI R F, QI H, MA Y, DENG Y P, LIU S N, JIE Y S, JING J Z, HE J L, ZHANG X, WHEATLY L, HUANG C X, SHENG X, ZHANG M L, YIN L. Nat. Commun., 2020, 11:3027.

    14. [14]

      LI H, HAO Y H, FENG W, SONG Q H. J. Mater. Chem. B, 2020, 8(42):9785-9793.

    15. [15]

      CHEN Y. Nitric Oxide-Biol. Chem., 2020, 98:1-19.

    16. [16]

      KUMAR P, KALITA A, MONDAL B. J. Dalton Trans., 2011, 40(34):8656-8663.

    17. [17]

      FRANZ K J, SINGH N, SPINGLER B, LIPPARD S J. J. Inorg. Chem. Front., 2000, 39(18):4081-4092.

    18. [18]

      YAO H W, GUO X F, WANG H. Anal. Chem., 2020, 92(17):11904-11911.

    19. [19]

      SETSUKINAI K, URANO Y, KAKINUMA K, MAJIMA H J, NAGANO T. J. Biol. Chem., 2003, 278(5):3170-3175.

    20. [20]

      SHIUE T W, CHEN Y H, WU C M, SINGH G, CHEN H Y, HUNG C H, LIAW W F, WANG Y M. J. Inorg. Chem., 2012, 51(9):5400-5408.

    21. [21]

      WANG S X, CHU W H, WANG Y C, LIU S Y, ZHANG J C, LI S H, WEI H Y, ZHOU G Q, QIN X Y. J. Appl. Organomet. Chem., 2013, 27(7):373-379.

    22. [22]

      KUMAR P, KALITA A, MONDAL B. J. Dalton Trans., 2011, 40(34):8656-8663.

    23. [23]

      MCQUADE L E, LIPPARD S J. J. Inorg. Chem., 2010, 49(16):7464-7471.

    24. [24]

      YUAN J L, WANG G L. J. TrAC-Trends Anal. Chem., 2006, 25(5):490-500.

    25. [25]

      ELISEEVA S V, BUNZLI J C G. J. Chem. Soc. Rev., 2010, 39(1):189-227.

    26. [26]

      BUNZLI J C G. J. Chem. Rev., 2010, 110(5):2729-2755.

    27. [27]

      LAW G L, PAL R, PALSSON L O, PARKER D, WONG K L. Chem. Commun., 2009, (47):7321-7323.

    28. [28]

      MURRAY N S, JARVIS S P, GUNNLAUGSSON T. Chem. Commun., 2009, (33):4959-4961.

    29. [29]

      KWON N, KIM D, SWAMY K M K, YOON J. Coord. Chem. Rev., 2021, 427:213581.

    30. [30]

      CHEN Y G, GUO W H, YE Z Q, WANG G L, YUAN J L. Chem. Commun., 2011, 47(22):6266-6268.

    31. [31]

      JIN D Y, PIPER J A. Anal. Chem., 2011, 83(6):2294-2300.

    32. [32]

      WANG G L, YUAN J L, MATAUMOTO K, HU Z D. Anal. Biochem., 2001, 299(2):169-172.

    33. [33]

      ZHANG R, YE Z Q, WANG G L, ZHANG W Z, YUAN J. Chem.-Eur. J., 2010, 16(23):6884-6891.

    34. [34]

      LIU M J, YE Z Q, WANG G L, YUAN J L. Talanta, 2012, 99:951-958.

    35. [35]

      KOJIMA H, HIROTANI M, NAKATSUBO N, KIKUCHI K, URANO Y, HIGUCHI T, HIRATA Y, NAGANO T. Anal. Chem., 2001, 73(9):1967-1973.

    36. [36]

      IZUMI S, URANO Y, HANAOKA K, TERAI T, NAGANO T. J. Am. Chem. Soc., 2009, 131(29):10189-10200.

    37. [37]

      GOULD K S, LAMOTTE O, KLINGUERl A, PUGIN A, WENDEHENNE D. J. Cell Environ., 2003, 26(11):1851-1862.

  • 加载中
    1. [1]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    5. [5]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    6. [6]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    10. [10]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    17. [17]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    18. [18]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    19. [19]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    20. [20]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

Metrics
  • PDF Downloads(10)
  • Abstract views(732)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return