Citation: LUO Da,  ZHANG Yi,  YANG Xiao-Wen,  CHENG Fang-Fang,  ZHANG Li. Application of Up-conversion Nanomaterials in Detection of MicroRNAs[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1428-1436. doi: 10.19756/j.issn.0253-3820.211186 shu

Application of Up-conversion Nanomaterials in Detection of MicroRNAs

  • Corresponding author: CHENG Fang-Fang,  ZHANG Li, 
  • Received Date: 15 March 2021
    Revised Date: 6 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21705081), the Natural Science Foundation of Jiangsu Province, China (Nos.BK20161037, BK20201232) and the 333 High-level Talents Training Project Funded by Jiangsu Province, China (No.BRA2020071).

  • The occurrence and development of diseases are often accompanied by abnormal expression of certain microRNAs. MicroRNAs are small and non-coding RNA molecules which play an important role in many basic physiological and pathological processes as post-transcriptional regulators of gene expression. At present, many studies have shown that microRNAs can be used as biomarkers for diagnosis and treatment of diseases. Traditional detection methods of microRNAs often have shortcomings such as low sensitivity and poor selectivity, and cannot achieve real-time detection. Rare earth upconversion nanomaterials have unique anti-stokes shift properties and advantages including good photobleaching resistance, low tissue autofluorescence interference, good biocompatibility and low toxicity, and thus are commonly used for microRNAs detection. Therefore, detecting the changes of expression level of microRNAs using up-conversion nanomaterials in real-time can identify the occurrence and development of diseases, and provide evidence for the diagnosis, treatment and prognosis of diseases. In this papar, the application progress of up-conversion nanomaterials in detection of microRNAs in recent years is reviewed.
  • 加载中
    1. [1]

      LI F, ZHOU Y L, YIN H S, AI S Y. Biosens. Bioelectron., 2020, 166:112476.

    2. [2]

      ZHENG Z, LI J, AN J Y, FENG Y K, WANG L R. Diagn. Pathol., 2021, 16(1):5.

    3. [3]

      LI Y F, JING Y, HAO J L, FRANKFORT N C, ZHOU X S, SHEN B, LIU X Y, WANG L H, LI R S. Protein Cell, 2013, 4(11):813-819.

    4. [4]

      SONG Y Z, XU Z J, WANG F. Mol. Ther., 2020, 21:555-567.

    5. [5]

      FERRELLI M L, GARCIA M L, ROMANOWSKI V, REYES C A. Comput. Biol. Chem., 2020, 87:107276.

    6. [6]

    7. [7]

      DONG T, YIN R, YU Q C, QIU W W, LI K, QIAN L S, LI H, SHEN B, LIU G D. Anal. Chim. Acta, 2021, 1147:56-63.

    8. [8]

    9. [9]

      YUAN Y H, WU Y D, CHI B Z, WEN S H, LIAN R P, QIU J D. Biosens. Bioelectron., 2017, 97:325-331.

    10. [10]

      YANG F, YANG F, TU T T, LIAO N, CHAI Y Q, YUAN R, ZHOU Y. Biosens. Bioelectron., 2021, 173:112820.

    11. [11]

      LI M, XU X, CAI Q Y. Sens. Actuators, B, 2021, 327:128915.

    12. [12]

    13. [13]

      DENG K R, XU L L, GUO X, WU X T, LIU Y L, ZHU Z M, LI Q, ZHAN Q Q, LI C X, QUAN Z W. Small, 2020, 16(38):2002066.

    14. [14]

      CALABRO R L, KARNA P, KIM D Y, YANG D S. J. Chem. Phys., 2020, 153(6):064701.

    15. [15]

      GHOSH S, CHANG Y F, YANG D M, CHATTOPADHYAY S. Biosens. Bioelectron., 2020, 155:112115.

    16. [16]

      LIU B, LI C X, YANG P P, HOU Z Y, LIN J. Adv. Mater., 2017, 29:1605434.

    17. [17]

      YANG D M, MA P A, HOU Z Y, CHENG Z Y, LI C X, LIN J. Chem. Soc. Rev., 2015, 44:1416.

    18. [18]

      LIU Y Y, MENG X F, BU W B. Coord. Chem. Rev., 2019, 379:82.

    19. [19]

      ZHU X J, SU Q Q, FENG W, LI F Y. Chem. Soc. Rev., 2017, 46:1025.

    20. [20]

    21. [21]

    22. [22]

      ASHRAFIZADEH M, AHMADI Z, MOHAMMADINEJAD R, FARKHONDEH T, SAMARGHANDIAN S. Nutr. Cancer, 2020, 72(8):1264-1275.

    23. [23]

      WANG Y P, NIU L Z, ZHAO J, WANG M X, LI K, ZHENG Y J. Briefings Funct. Genomics, 2020, 20(1):19-27.

    24. [24]

      MOKANSZKI A, MOLNAR Z, TOTHNE E V, BODNAR B, JAKAB A, BALINT B L, BALOGH I. Hum. Fertil., 2020, 23(4):246-255.

    25. [25]

      HE J L, ZHANG T T, JIANG B Y, XIANG Y, YUAN R. Talanta, 2020, 210:120651.

    26. [26]

      TANIGUCHI K, UCHIYAMA K, AKAO Y. Cancer Sci., 2020, 112(1):41-50.

    27. [27]

      HENSLEY A P, MCALINDEN A. Bone, 2020, 143:115760.

    28. [28]

      GHOLAMINEJAD A, ZARE N, DANA N, SHAFIE D, MANI A, JAVANMARD S H. Heart Failure Rev., 2021, 26:997-1021.

    29. [29]

      GAO Y N, MA H, LV C Y, LAN F, WANG Y F, DENG Y L. Cancer Lett., 2021, 499:73-84.

    30. [30]

      PAWLUCZYK I Z A, DIDANGELOS A, BARBOUR S J, ER L, BECKER J U, MARTIN R, TAYLOR S, BHACHU J S, LYONS E G, JENKINS R, FRASER D, MOLYNEUX K, PERALESPATON J, SAEZRODRIGUEZ J, BARRATT J. Kidney Int., 2021, 99(5):1127-1139.

    31. [31]

      LIU J H, ZHU S L, TANG W, HUANG Q H, MEI Y, YANG H W. Cancer Cell Int., 2021, 21(1):55.

    32. [32]

      CAO J C, ZHANG X, XU P H, WANG H X, WANG S, ZHANG L, LI Z, XIE L, SUN G L, XIA Y W, LV J L, YANG J, XU Z K. J. Exp. Clin. Cancer Res., 2021, 40(1):6.

    33. [33]

      ZHANG L, GUO C J, JI T F, CHEN X. Nanoscale Res. Lett., 2021, 16(1):2.

    34. [34]

      HUA Y T, XU W X, LI H, XIA M. J. Cancer, 2021, 12(1):198-206.

    35. [35]

      LIU C F, TONG Z, TAN J Y, XIN Z X, WANG Z Y, TIAN L M. Exp. Ther. Med., 2019, 18(5):3543-3551.

    36. [36]

      GHAREIB A F, MOHAMED R H, ABD EL-FATAH A R, SAADAWY S F. J. Gastrointest. Cancer, 2020, 51(3):818-823.

    37. [37]

      TIAN L J, CHEN M T, HE Q, YAN Q L, ZHAI C B. Mol. Med. Rep., 2020, 22(3):2307-2317.

    38. [38]

      YANG L, YANG J H. Oncol. Lett., 2020, 20(4):49.

    39. [39]

      CHAN H W, YANG B X, WONG W, BLAKELEY P, SEAH I, TAN Q S W, WANG H F, BHARGAVA M, LIN H A, CHAI C H, MANGUNKUSUMO E A, THET N, YUEN Y S. J. Clin. Med., 2020, 9(9):2920.

    40. [40]

      LI Y T, TANG J L, HE L C, LIU Y, LIU Y L, CHEN C Y, TANG Z Y. Adv. Mater., 2015, 27(27):4075-4080.

    41. [41]

      QIU H L, CHEN G Y, SUN L, HAO S W, HAN G, YANG C H. J. Mater. Chem., 2011, 21(43):17202-17208.

    42. [42]

      TAMRAKAR R K, BISEN D P, UPADHYAY K, SAHU I P, SAHU M. RSC Adv., 2016, 6(95):92360-92370.

    43. [43]

      LAN J M, WEN F D, FU F M, ZHANG X, CAI S X, LIU Z J, WU D Z, LI C Y, CHEN J H, WANG C. RSC Adv., 2015, 5(23):18008-18012.

    44. [44]

      LAURENTI M, PAEZ-PEREZ M, ALGARRA M, ALONSO-CRISTOBAL P, LOPEZ-CABARCOS E, MENDEZ-GONZALEZ D, RUBIO-RETAMA J. ACS Appl. Mater. Interfaces, 2016, 8(20):12644-12651.

    45. [45]

      ZHAO X X, ZHANG L L, GAO W Y, YU X L, GU W, FU W L, LUO Y. ACS Appl. Mater. Interfaces, 2020, 12(32):35958-35966.

    46. [46]

      ZHAO J, CHU H Q, ZHAO Y, LU Y, LI L L. J. Am. Chem. Soc., 2019, 141(17):7056-7062.

    47. [47]

      ZHU D, MIAO Z Y, HU Y, ZHNAG X J. Biosens. Bioelectron., 2018, 100:475-481.

    48. [48]

      WANG G, FU Y K, REN Z H, HUANG J, BEST S, LI X, HAN G R. Electrochem. Commun., 2018, 54(49):6324-6327.

    49. [49]

      LU Y Y, WANG L, CHEN H Q. Spectrochim. Acta, Part A, 2019, 223:117345.

    50. [50]

      LI C Y, KANG Y F, ZHENG B, XU C M, SONG C Y, PANG D W, TANG H W. Sens. Actuators, B, 2019, 282:790-797.

    51. [51]

      ZHANG K Y, SONG S T, HUANG S, YANG L, MIN Q H, WU X C, LU F, ZHU J J. Small, 2018, 14(40):1802292.

    52. [52]

      ZHANG U, ZHANG Y, ZHANG X B, LI Y Y, HE Y L, LIU Y, JU H X. Chem. Sci., 2020, 11(24):6289-6296.

    53. [53]

      REN H, LONG Z, SHEN X T, ZHANG Y, SUN J H, OUYANG J, NA N. ACS Appl. Mater. Interfaces, 2018, 10(30):25621-25628.

    54. [54]

      YANG L, ZHANG K Y, BI S, ZHU J J. ACS Appl. Mater. Interfaces, 2019, 11(42):38459-38466.

    55. [55]

      ZHANG K Y, LU F, CAI Z, SONG S T, JIANG L P, MIN Q H, WU X C, ZHU J J. Anal. Chem., 2020, 92(17):11795-11801.

    56. [56]

      QU A H, SUN M Z, XU L G, HAO C L, WU X L, XU C L. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(9):3391-3400.

    57. [57]

      LI S, XU L G, SUN M Z, WU X L, LIU L Q, KUANG H. Adv. Mater., 2017, 29(19):1606086.

    58. [58]

      ZHANG Y, SHEN X T, LI W X, LONG Z, OUYANG J, NA N. Anal. Chem., 2020, 92(12):8125-8132.

    59. [59]

      GONG L, LIU S M, SONG Y, XIE S W, GUO Z Y, XU J X. J. Mater. Chem. B, 2020, 8(27):5952-5961.

    60. [60]

      HUO M, LI S Q, ZHANG P W, FENG Y M, LIU Y R, WU N, JU H X, DING L. Anal. Chem., 2019, 91(5):3374-3381.

    61. [61]

      ZHANG H X, FAN Y, PEI P, SUN C X, LU L F, ZHANG F. Anal. Chem., 2019, 58(30):10153-10157.

    62. [62]

      LI C Y, ZHENG B, KANG Y F, TANG H W, PANG D W. ACS Sens., 2020, 5(1):199-207.

    63. [63]

      JIANG X Q, HAO C L, ZHANG H Y, WU X L, XU L G, SUN M Z, XU C L, KUANG H. ACS Appl. Mater. Interfaces, 2020, DOI:10.1021/acsami.0c00434.

    64. [64]

      LI S, XU L G, MA W, WU X L, SUN M Z, KUANG H, WANG L B, KOTOV N A, XU C L. J. Am. Chem. Soc., 2016, 138(1):306-312.

    65. [65]

      LIU X, ZHANG S Q, CHENG Z H, WEI X, YANG T, YU Y L, CHEN M L, WANG J H. Anal. Chem., 2018, 90(20):12116-12122.

  • 加载中
    1. [1]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    2. [2]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    3. [3]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    4. [4]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    5. [5]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    6. [6]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    7. [7]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    8. [8]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    9. [9]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    10. [10]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(10)
  • Abstract views(632)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return