Citation: QIN Xu-Long,  HAN Fu-She. Study on Reaction Mechanism of Desymmetric Enantioselective Reduction of Cyclic 1,3-Diketones Aided by Gas Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 290-299. doi: 10.19756/j.issn.0253-3820.211170 shu

Study on Reaction Mechanism of Desymmetric Enantioselective Reduction of Cyclic 1,3-Diketones Aided by Gas Chromatography

  • Corresponding author: HAN Fu-She, fshan@ciac.ac.cn
  • Received Date: 9 March 2021
    Revised Date: 4 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.22071235)

  • A gas chromatography (GC) method was established for determination of conversion rate and product content in the desymmetric enantioselective reduction of 1,3-cyclopentadione compounds. This method could be used as a useful supplementary method to investigate the mechanism of desymmetric enantioselective reduction of cyclic 1,3-diketones catalyzed by chiral phosphonamides. The samples were separated on a DB-WAX column (30 m×0.25 mm, 0.25 μm) and analyzed qualitatively and quantitatively by gas chromatography using a standard compound comparison method. The method could be used for convenient, rapid and accurate determination of content of the remaining starting materials and different products generated at different reaction time. By using the established detection method, the reaction course under four different reaction conditions (without additive and catalyst, with additive only, with catalyst only and with both additive and catalyst) were monitored in detail. The results showed that the reaction with the concomitant presence of N,N-diisopropylethylamine (DIPEA) and catalyst not only proceeded much faster but also provided higher yields compared with other three reaction systems. Namely, the conversion rate was up to 80% within 5 min, and the content of target product was close to 70%. In addition, control experiments showed that the addition of DIPEA could also greatly improve the enantioselectivity of the product. Consequently, a combination of these results with our previous mechanistic study by using NMR method provided a further understanding of the mechanism of the related reactions, namely, the addition of amine additives could promote the formation of chiral catalytically active species.
  • 加载中
    1. [1]

      YEUNG Y Y, CHEIN R J, COREY E J. J. Am. Chem. Soc., 2007, 127(34): 10346-10347.

    2. [2]

      BREITLER S, CARREIRA E M. Angew. Chem., Int. Ed., 2013, 52(42): 11168-11171.

    3. [3]

      SHARPE R J, JOHNSON J S. J. Org. Chem., 2015, 80(19): 9740-9766.

    4. [4]

      SHARPE R J, JOHNSON J S. J. Am. Chem. Soc., 2015, 137(15): 4968-4971.

    5. [5]

      KUANG L P, LIU L L, CHIU P. Chemistry, 2015, 21(41): 14287-14291.

    6. [6]

      LU Z H, ZHANG X, GUO Z C, CHEN Y, MU T, LI A. J. Am. Chem. Soc., 2018, 140(29): 9211-9218.

    7. [7]

      LIU L L, CHIU P. Chem. Commun., 2011, 47(12): 3416-3417.

    8. [8]

      SHIMIZU M, YAMADA S, FUJITA Y, KOBAYASHI F. Tetrahedron: Asymmetry, 2000, 11(19): 3883-3886.

    9. [9]

      CSUK R, GLAENZER B I. Chem. Rev., 1991, 91(1): 49-97.

    10. [10]

      GONG Q, WEN J L, ZHANG X M. Chem. Sci., 2019, 10(25): 6350-6353.

    11. [11]

      YU C B, SONG B, CHEN M W, SHEN H Q, ZHOU Y G. Org. Lett., 2019, 21(23): 9401-9404.

    12. [12]

      WU G J, ZHANG Y H, TAN D X, HAN F S. Nat. Commun., 2018, 9: 2148.

    13. [13]

      WU G J, ZHANG Y H, TAN D X, HE L, CAO B C, HE Y P, HAN F S. J. Org. Chem., 2019, 84(6): 3223-3238.

    14. [14]

      CAO B C, WU G J, YU F, HE Y P, HAN F S. Org. Lett., 2018, 20(12): 3687-3690.

    15. [15]

      DU Z J, GUAN J, WU G J, XU P, GAO L X, HAN F S. J. Am. Chem. Soc., 2015, 137(2): 632-635.

    16. [16]

      CHEN Y H, QIN X L, GUAN J, DU Z J, HAN F S. Tetrahedron: Asymmetry, 2017, 28(4): 522-531.

    17. [17]

      CHEN Y H, QIN X L, HAN F S. Chem. Commun., 2017, 53(43): 5826-5829.

    18. [18]

      QIN X L, LI A, HAN F S. J. Am. Chem. Soc., 2021, 143(7): 2994-3002.

  • 加载中
    1. [1]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    2. [2]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    11. [11]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(10)
  • Abstract views(583)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return