Citation: QIN Xu-Long,  HAN Fu-She. Study on Reaction Mechanism of Desymmetric Enantioselective Reduction of Cyclic 1,3-Diketones Aided by Gas Chromatography[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 290-299. doi: 10.19756/j.issn.0253-3820.211170 shu

Study on Reaction Mechanism of Desymmetric Enantioselective Reduction of Cyclic 1,3-Diketones Aided by Gas Chromatography

  • Corresponding author: HAN Fu-She, fshan@ciac.ac.cn
  • Received Date: 9 March 2021
    Revised Date: 4 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.22071235)

  • A gas chromatography (GC) method was established for determination of conversion rate and product content in the desymmetric enantioselective reduction of 1,3-cyclopentadione compounds. This method could be used as a useful supplementary method to investigate the mechanism of desymmetric enantioselective reduction of cyclic 1,3-diketones catalyzed by chiral phosphonamides. The samples were separated on a DB-WAX column (30 m×0.25 mm, 0.25 μm) and analyzed qualitatively and quantitatively by gas chromatography using a standard compound comparison method. The method could be used for convenient, rapid and accurate determination of content of the remaining starting materials and different products generated at different reaction time. By using the established detection method, the reaction course under four different reaction conditions (without additive and catalyst, with additive only, with catalyst only and with both additive and catalyst) were monitored in detail. The results showed that the reaction with the concomitant presence of N,N-diisopropylethylamine (DIPEA) and catalyst not only proceeded much faster but also provided higher yields compared with other three reaction systems. Namely, the conversion rate was up to 80% within 5 min, and the content of target product was close to 70%. In addition, control experiments showed that the addition of DIPEA could also greatly improve the enantioselectivity of the product. Consequently, a combination of these results with our previous mechanistic study by using NMR method provided a further understanding of the mechanism of the related reactions, namely, the addition of amine additives could promote the formation of chiral catalytically active species.
  • 加载中
    1. [1]

      YEUNG Y Y, CHEIN R J, COREY E J. J. Am. Chem. Soc., 2007, 127(34): 10346-10347.

    2. [2]

      BREITLER S, CARREIRA E M. Angew. Chem., Int. Ed., 2013, 52(42): 11168-11171.

    3. [3]

      SHARPE R J, JOHNSON J S. J. Org. Chem., 2015, 80(19): 9740-9766.

    4. [4]

      SHARPE R J, JOHNSON J S. J. Am. Chem. Soc., 2015, 137(15): 4968-4971.

    5. [5]

      KUANG L P, LIU L L, CHIU P. Chemistry, 2015, 21(41): 14287-14291.

    6. [6]

      LU Z H, ZHANG X, GUO Z C, CHEN Y, MU T, LI A. J. Am. Chem. Soc., 2018, 140(29): 9211-9218.

    7. [7]

      LIU L L, CHIU P. Chem. Commun., 2011, 47(12): 3416-3417.

    8. [8]

      SHIMIZU M, YAMADA S, FUJITA Y, KOBAYASHI F. Tetrahedron: Asymmetry, 2000, 11(19): 3883-3886.

    9. [9]

      CSUK R, GLAENZER B I. Chem. Rev., 1991, 91(1): 49-97.

    10. [10]

      GONG Q, WEN J L, ZHANG X M. Chem. Sci., 2019, 10(25): 6350-6353.

    11. [11]

      YU C B, SONG B, CHEN M W, SHEN H Q, ZHOU Y G. Org. Lett., 2019, 21(23): 9401-9404.

    12. [12]

      WU G J, ZHANG Y H, TAN D X, HAN F S. Nat. Commun., 2018, 9: 2148.

    13. [13]

      WU G J, ZHANG Y H, TAN D X, HE L, CAO B C, HE Y P, HAN F S. J. Org. Chem., 2019, 84(6): 3223-3238.

    14. [14]

      CAO B C, WU G J, YU F, HE Y P, HAN F S. Org. Lett., 2018, 20(12): 3687-3690.

    15. [15]

      DU Z J, GUAN J, WU G J, XU P, GAO L X, HAN F S. J. Am. Chem. Soc., 2015, 137(2): 632-635.

    16. [16]

      CHEN Y H, QIN X L, GUAN J, DU Z J, HAN F S. Tetrahedron: Asymmetry, 2017, 28(4): 522-531.

    17. [17]

      CHEN Y H, QIN X L, HAN F S. Chem. Commun., 2017, 53(43): 5826-5829.

    18. [18]

      QIN X L, LI A, HAN F S. J. Am. Chem. Soc., 2021, 143(7): 2994-3002.

  • 加载中
    1. [1]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    2. [2]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    3. [3]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    4. [4]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    10. [10]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    11. [11]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    14. [14]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    15. [15]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

Metrics
  • PDF Downloads(10)
  • Abstract views(838)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return