Citation: LIU Su-Yue,  TIAN Jing-Jing,  ZHU Long-Jiao,  HUANG Kun-Lun,  TIAN Hong-Tao,  XU Wen-Tao. Time Resolved Fluorescence Detection of Aflatoxin B1 with DNA/Terbium Ion Complex Assisted by Exonuclease Ⅲ[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1327-1334. doi: 10.19756/j.issn.0253-3820.211168 shu

Time Resolved Fluorescence Detection of Aflatoxin B1 with DNA/Terbium Ion Complex Assisted by Exonuclease Ⅲ

  • Corresponding author: TIAN Hong-Tao,  XU Wen-Tao, 
  • Received Date: 9 March 2021
    Revised Date: 21 May 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFC1600901) and the Shandong Key Research and Development Program (No.2018YYSP019).

  • Based on the highly specific recognition ability of aptamers, and the combination with an exonuclease Ⅲ (Exo Ⅲ)-assisted nucleic acid signal amplification strategy and the time resolved fluorescence measurement technology, a label-free and ultra-sensitive aptamer fluorescent biosensor (aptasensor) was constructed to detect aflatoxin B1 (AFB1). Two label-free functional nucleic acid hairpins were designed. The hairpin H1 containing AFB1 aptamer sequence was used as the identification element, and the G-rich sequence-containing hairpin H2 of the stem acted as the signal response element. AFB1 could specifically bind to the aptamer sequence in H1, leading to the unfolding of H1 and its complementary paring with H2 to form an AFB1-H1-H2 complex, which consequently triggered the exonuclease Ⅲ (Exo Ⅲ) enzyme digestion. The 3' blunt end of H2 in the complex was digested to release the G-rich sequence in H2, which could significantly enhance the emission of terbium ions (Tb3+). Meanwhile, the released AFB1-H1 could freely bind to the next H2 to start Exo Ⅲ-assisted target cyclic amplification, causing the release of considerable G-rich single strands into the system and realizing signal amplification. As the concentration of AFB1 was increased, the relative fluorescence intensity of the system increased. AFB1 could be detected by time-resolved luminescence spectroscopy. The linear detection range was from 0.001 to 0.1 ng/mL, and the detection limit (3σ) was as low as 0.9 pg/mL. This method was used to detect AFB1 in corn samples, with the recoveries of 98.5%-103.5%, showing a good application potential in detection of AFB1 in food and agricultural products.
  • 加载中
    1. [1]

      FLORES-FLORES M E, GONZALEZ-PEAS E. Food Chem., 2017(218): 378-385.

    2. [2]

    3. [3]

      NAKAJIMA M, TSUBOUCHI H, MIYABE M, UENO Y. Food Agric. Immunol., 1997, 9(2): 77-83.

    4. [4]

      REDDY S V, MAYI D K, REDDY M U, THIRUMALA-DEVI K, REDDY D V R. Food Addit. Contam., 2001, 18(6): 553-558.

    5. [5]

      LIU R, LI W, CAI T T, DENG Y, DING Z, LIU Y, ZHU X R, WANG X, LIU J, LIANG B W, ZHENG T S, LI J L. ACS Appl. Mater. Interfaces, 2018, 10(17): 14447-14453.

    6. [6]

      TAGHDISI S M, DANESH N M, RAMEZANI M, ABNOUS K. Food Chem., 2018, 268: 342-346.

    7. [7]

      ZHANG J J, LI Z M, ZHAO S C, LU Y. Analyst, 2016, 141(13): 4029-4034.

    8. [8]

      MOORE E G, SAMUELA P S, RAYMOND K N. Acc. Chem. Res., 2009, 40(4): 542-552.

    9. [9]

      LI L L, GE P H, PAUL R, LU Y. Anal. Chem., 2012, 84(18): 7852-7856.

    10. [10]

      ZHANG M, LE H N, JIANG X Q, YIN B C, YE B C. Anal. Chem., 2013, 85(23): 11665-11674.

    11. [11]

      HONH J, ZHANG X J, WANG G F. Biosens. Bioelectron., 2015, 74: 931-938.

    12. [12]

      ZHANG M, QU Z B, MA H Y, ZHOU T S, SHI G Y. Chem. Commun., 2014, 50: 4677-4679.

    13. [13]

      CHEN J Q, XUE S F, CHEN Z H, ZHANG S Q, SHI G Y, ZHANG M. Biosens. Bioelectron., 2018, 100: 526-532.

    14. [14]

      YANG W J, RUAN Y J, WU W H, CHEN P P, XU L J, FU F F. Anal. Bioanal. Chem., 2014, 406(18): 4535-4540.

    15. [15]

      GALEZOWSKA E, GLUSZYNSKA A, JUSKOWIAK B J. Inorg. Biochem., 2007, 101(4): 678-685.

    16. [16]

      COSTA D, BURROWS H D, MIGUEL M D. Langmuir, 2005, 21(23): 10492-10496.

    17. [17]

      TOPAL M D, FRESCO J R. Biochemistry, 1980, 19(24): 5531-5537.

    18. [18]

      LIN C S, CAI Z X, WANG Y R, ZHU Z, YANG C J, CHEN X. Anal. Chem., 2014, 86(14): 6758-6762.

    19. [19]

      ZHANG J, CHEN J H, CHEN R C, FU F F. Biosens. Bioelectron., 2009, 25(2): 378-382.

    20. [20]

      ZHANG J, GAO Q L, CHEN P P, CHEN J H, CHEN G N, FU F F. Biosens. Bioelectron., 2011, 26(10): 4053-4057.

    21. [21]

      SMIRNOV I, SHAFER R H. Mol. Biol., 2000, 296(1): 1-5.

    22. [22]

      LI C L, LIU K T, LIN Y W, CHANG H T. Anal. Chem., 2011, 83(1): 225-230.

    23. [23]

      HU P, ZHU C, JIN L H, DONG S J. Biosens. Bioelectron., 2012, 34(1): 83-87.

    24. [24]

      XIAO M, ZHAO W, LI H, PU J, L M, WANG S, XU J, YU R. Sens. Actuators, B, 2020, 322: 128495.

    25. [25]

    26. [26]

      CHEN L, WEN F, LI M, GUO X, LI S, ZHENG N, WANG J. Food Chem., 2017, 215: 377-382.

    27. [27]

      JIA Y, ZHOU G, WANG X, ZHANG Y, LI Z, LIU P, YU B, ZHANG J. Talanta, 2020, 219: 121342.

    28. [28]

      LI Y, LIU D, ZHU C, SHEN X, LIU Y, YOU T. J. Hazard. Mater., 2020, 387: 122001.

    29. [29]

      HUI Y, WANG B, REN R, ZHAO A, ZHANG F, SONG S, HE Y. Food Control, 2020, 109: 106902.

  • 加载中
    1. [1]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    2. [2]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    8. [8]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    20. [20]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

Metrics
  • PDF Downloads(12)
  • Abstract views(735)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return