Citation: LIU Su-Yue,  TIAN Jing-Jing,  ZHU Long-Jiao,  HUANG Kun-Lun,  TIAN Hong-Tao,  XU Wen-Tao. Time Resolved Fluorescence Detection of Aflatoxin B1 with DNA/Terbium Ion Complex Assisted by Exonuclease Ⅲ[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1327-1334. doi: 10.19756/j.issn.0253-3820.211168 shu

Time Resolved Fluorescence Detection of Aflatoxin B1 with DNA/Terbium Ion Complex Assisted by Exonuclease Ⅲ

  • Corresponding author: TIAN Hong-Tao,  XU Wen-Tao, 
  • Received Date: 9 March 2021
    Revised Date: 21 May 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFC1600901) and the Shandong Key Research and Development Program (No.2018YYSP019).

  • Based on the highly specific recognition ability of aptamers, and the combination with an exonuclease Ⅲ (Exo Ⅲ)-assisted nucleic acid signal amplification strategy and the time resolved fluorescence measurement technology, a label-free and ultra-sensitive aptamer fluorescent biosensor (aptasensor) was constructed to detect aflatoxin B1 (AFB1). Two label-free functional nucleic acid hairpins were designed. The hairpin H1 containing AFB1 aptamer sequence was used as the identification element, and the G-rich sequence-containing hairpin H2 of the stem acted as the signal response element. AFB1 could specifically bind to the aptamer sequence in H1, leading to the unfolding of H1 and its complementary paring with H2 to form an AFB1-H1-H2 complex, which consequently triggered the exonuclease Ⅲ (Exo Ⅲ) enzyme digestion. The 3' blunt end of H2 in the complex was digested to release the G-rich sequence in H2, which could significantly enhance the emission of terbium ions (Tb3+). Meanwhile, the released AFB1-H1 could freely bind to the next H2 to start Exo Ⅲ-assisted target cyclic amplification, causing the release of considerable G-rich single strands into the system and realizing signal amplification. As the concentration of AFB1 was increased, the relative fluorescence intensity of the system increased. AFB1 could be detected by time-resolved luminescence spectroscopy. The linear detection range was from 0.001 to 0.1 ng/mL, and the detection limit (3σ) was as low as 0.9 pg/mL. This method was used to detect AFB1 in corn samples, with the recoveries of 98.5%-103.5%, showing a good application potential in detection of AFB1 in food and agricultural products.
  • 加载中
    1. [1]

      FLORES-FLORES M E, GONZALEZ-PEAS E. Food Chem., 2017(218): 378-385.

    2. [2]

    3. [3]

      NAKAJIMA M, TSUBOUCHI H, MIYABE M, UENO Y. Food Agric. Immunol., 1997, 9(2): 77-83.

    4. [4]

      REDDY S V, MAYI D K, REDDY M U, THIRUMALA-DEVI K, REDDY D V R. Food Addit. Contam., 2001, 18(6): 553-558.

    5. [5]

      LIU R, LI W, CAI T T, DENG Y, DING Z, LIU Y, ZHU X R, WANG X, LIU J, LIANG B W, ZHENG T S, LI J L. ACS Appl. Mater. Interfaces, 2018, 10(17): 14447-14453.

    6. [6]

      TAGHDISI S M, DANESH N M, RAMEZANI M, ABNOUS K. Food Chem., 2018, 268: 342-346.

    7. [7]

      ZHANG J J, LI Z M, ZHAO S C, LU Y. Analyst, 2016, 141(13): 4029-4034.

    8. [8]

      MOORE E G, SAMUELA P S, RAYMOND K N. Acc. Chem. Res., 2009, 40(4): 542-552.

    9. [9]

      LI L L, GE P H, PAUL R, LU Y. Anal. Chem., 2012, 84(18): 7852-7856.

    10. [10]

      ZHANG M, LE H N, JIANG X Q, YIN B C, YE B C. Anal. Chem., 2013, 85(23): 11665-11674.

    11. [11]

      HONH J, ZHANG X J, WANG G F. Biosens. Bioelectron., 2015, 74: 931-938.

    12. [12]

      ZHANG M, QU Z B, MA H Y, ZHOU T S, SHI G Y. Chem. Commun., 2014, 50: 4677-4679.

    13. [13]

      CHEN J Q, XUE S F, CHEN Z H, ZHANG S Q, SHI G Y, ZHANG M. Biosens. Bioelectron., 2018, 100: 526-532.

    14. [14]

      YANG W J, RUAN Y J, WU W H, CHEN P P, XU L J, FU F F. Anal. Bioanal. Chem., 2014, 406(18): 4535-4540.

    15. [15]

      GALEZOWSKA E, GLUSZYNSKA A, JUSKOWIAK B J. Inorg. Biochem., 2007, 101(4): 678-685.

    16. [16]

      COSTA D, BURROWS H D, MIGUEL M D. Langmuir, 2005, 21(23): 10492-10496.

    17. [17]

      TOPAL M D, FRESCO J R. Biochemistry, 1980, 19(24): 5531-5537.

    18. [18]

      LIN C S, CAI Z X, WANG Y R, ZHU Z, YANG C J, CHEN X. Anal. Chem., 2014, 86(14): 6758-6762.

    19. [19]

      ZHANG J, CHEN J H, CHEN R C, FU F F. Biosens. Bioelectron., 2009, 25(2): 378-382.

    20. [20]

      ZHANG J, GAO Q L, CHEN P P, CHEN J H, CHEN G N, FU F F. Biosens. Bioelectron., 2011, 26(10): 4053-4057.

    21. [21]

      SMIRNOV I, SHAFER R H. Mol. Biol., 2000, 296(1): 1-5.

    22. [22]

      LI C L, LIU K T, LIN Y W, CHANG H T. Anal. Chem., 2011, 83(1): 225-230.

    23. [23]

      HU P, ZHU C, JIN L H, DONG S J. Biosens. Bioelectron., 2012, 34(1): 83-87.

    24. [24]

      XIAO M, ZHAO W, LI H, PU J, L M, WANG S, XU J, YU R. Sens. Actuators, B, 2020, 322: 128495.

    25. [25]

    26. [26]

      CHEN L, WEN F, LI M, GUO X, LI S, ZHENG N, WANG J. Food Chem., 2017, 215: 377-382.

    27. [27]

      JIA Y, ZHOU G, WANG X, ZHANG Y, LI Z, LIU P, YU B, ZHANG J. Talanta, 2020, 219: 121342.

    28. [28]

      LI Y, LIU D, ZHU C, SHEN X, LIU Y, YOU T. J. Hazard. Mater., 2020, 387: 122001.

    29. [29]

      HUI Y, WANG B, REN R, ZHAO A, ZHANG F, SONG S, HE Y. Food Control, 2020, 109: 106902.

  • 加载中
    1. [1]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    2. [2]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    3. [3]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    4. [4]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    7. [7]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    17. [17]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    18. [18]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

Metrics
  • PDF Downloads(12)
  • Abstract views(940)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return