Citation: LIANG Qian,  LI Shu-Ming,  GUAN Xi-Liang,  DANG Fu-Quan,  ZHANG Zhi-Qi,  ZHANG Jing. A Covalent Organic Framework Material Decorated with Gold Nanoparticles as Novel Matrix for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Analysis of Small Organic Molecules[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1713-1721. doi: 10.19756/j.issn.0253-3820.211162 shu

A Covalent Organic Framework Material Decorated with Gold Nanoparticles as Novel Matrix for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Analysis of Small Organic Molecules

  • Corresponding author: ZHANG Jing, zhangjing8902@snnu.edu.cn
  • Received Date: 4 March 2021
    Revised Date: 17 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074086), the Fundamental Research Funds for the Central Universities, China (No.gk202005003) and the Science and Technology Plan of Xi'an, China (No.GXYD5.3).

  • Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a promising analytical technology for large molecular weight molecules compounds, however, the interference of matrix-related ion peaks from the conventional matrix restricts the application of MALDI-MS in low molecular weight (LMW) organs (<500 Da). Although multiple exploration has been conducted in this region, it is still difficult to directly detect some molecules, such as low-molecular carbohydrate, which is a challenge to direct analysis without any enrichment because of its neutral property and difficulty in ionization. Herein, the in-situ Au nanoparticles (AuNPs) covalently embedded covalent organic frameworks (COFs) with sulfide cantilever (TTB-COF) were applied as a novel kind of matrix for direct analysis of various small organic molecules by MALDI-MS. The advantages of COFs such as abundant π-π periodic structure, suitable pore distribution, and increasing strong adsorption in the near UV region enable COFs be employed for various LMW organic analytes in cimprison with conventional matrix α-cyano-4-hydroxycinnamic acid (CHCA). Secondly, the addition of AuNPs not only facilitated the energy adsorption and desorption/ionization efficiency, but also provided an enrichment detection of sulfide molecules (LODs of thiabendazole as 5.0 nmol/L). Additionally, the synergistic effect between spatial confined COFs with sulfide cantilever and in-situ homogeneously distributed AuNPs solved the aggregation problem of inorganic nanoparticles during the evaporation preparation, which guaranteed the low background signals and improved the desorption/ionization efficiency. Therefore, after optimization of the synthetic conditions, Au-TTB-COF as a new matrix had an extremely low detection limit for small saccharides molecules as 11.0 nmol/L. Furthermore, Au-TTB-COF with strong salt tolerance and good reproducibility was applied to direct analysis of LMW molecules in the complex samples, such as glucose in serum samples, lactose in milk and thiabendazole in soft drinks. These results indicated that this metal-organic composites as MALDI-MS matrix had great potential in sensitive and specific detection of LMW organic chemicals in complex samples.
  • 加载中
    1. [1]

      TANAKA K, WAKI H, IDO Y, AKITA S, YOSHIDA Y, YOSHIDA T. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.

    2. [2]

      SUN C L, LIU W, MU Y, WANG X. Talanta, 2020, 209(1):120557-120566.

    3. [3]

      WU J, OUYANG D, HE Y T, SU H, YANG B C, LI J, SUN Q Q, LIN Z, CAI Z W. ACS Appl. Mater. Interfaces, 2019, 11(41):38255-38264.

    4. [4]

      ABDELHAMID H N. TrAC-Trends Anal. Chem., 2017, 89:68-98.

    5. [5]

      LI B, SUN R Y, ANDREW G, GE J Y, ZHANG Y, LI P, YANG H. Anal. Chem., 2019, 91(13):8221-8228.

    6. [6]

      DING F, QIAN Y N, DENG Z A, ZHANG J T, ZHOU Y C, YANG L, WANG F Y, WANG J P, ZHOU Z H, SHEN J L. Nanoscale, 2018, 10(46):22044-22054.

    7. [7]

      SEKULA J, NIZIOL J, RODE W, RUMAN T. Anal. Chim. Acta, 2015, 875(22):61-72.

    8. [8]

      DUTKIEWICZ E P, SU C H, LEE H J, HSU C C, YANG Y L. Plant J., 2021, 105(4):1123-1133.

    9. [9]

    10. [10]

    11. [11]

      PIRET G, DROBECQ H, COFFINIER Y, MELNYK O, BOUKHERROUB R. Langmuir, 2010, 26(2):1354-1361.

    12. [12]

      YANG H M, SU R, WISHBOK J S, LIU N, CHEN C B, LIU S Y, TANNENBAUM S R. Microchim. Acta, 2019, 186(2):104-112.

    13. [13]

      LEE D B, KIM Y, JALALUDUNA I, NGUYENA H Q, KIMB M, SEOB J, JANGS K S, KIM J. Food Chem., 2020, 342(10-11):128356-128365.

    14. [14]

      HOSU I S, SOBASZEK M, FICEK M, BOGDANOWICZ R, DROBECQ H, BOUSSEKEY L, BARRAS A, MELNYK O, BOUKHERROUB R, COFFINIER Y. Nanoscale, 2017, 9(27):9701-9715.

    15. [15]

      SU C L, TSENG W L. Anal. Chem., 2007, 79(4):1626-1633.

    16. [16]

      MCLEAN J A, STUMPO K A, RUSSELL D H. J. Am. Chem. Soc., 2005, 127(15):5304-5305.

    17. [17]

      MALEKI S, LEE D, KIM Y, KIM J. Int. J. Mass Spectrom., 2019, 442:44-50.

    18. [18]

      ZHANG J, ZHENG X L, NI Y L. J. Am. Soc. Mass Spectrom., 2015, 26(8):1291-1298.

    19. [19]

      NIU H Y, WANG S H, TAN Y X, SONG X W, CAI Y Q. RSC Adv., 2016, 6(102):99919-99923.

    20. [20]

      LIU H L, CHANG Y J, FAN T, GU Z Y. Chem. Commun., 2016, 52(88), 12984-12988.

    21. [21]

      FAN B Y, ZHOU H Y, WANG Y H, ZHAO Z Q, REN S Y, XU L, WU J, YAN H Y, GAO Z X. ACS Appl. Mater. Interfaces, 2020, 12(33):37793-37803.

    22. [22]

      SUN R M, HOU S Y, LUO C, JI X, WANG L N, MAI L Q, WANG C S. Nano Lett., 2020, 20(5):3880-3888.

    23. [23]

    24. [24]

      YUAN H Y, LI N X, LINGHU J J, DONG J Q, WANG Y X, KARMAKAR A, YUAN J R, LI M S, BUENCONESEJO P J S, LIU G L, CAI H, PENNYCOOK S J, SINGH N, ZHAO D. ACS Sens., 2020, 5(5):1474-1481.

    25. [25]

      ZHAI L P, YANG S, YANG X B, YE W Y, WANG J, CHEN W H, GUO Y, MI L W, WU Z J, SOUTIS C, XU Q, JIANG Z. Chem. Mater., 2020, 32(22):9747-9752.

    26. [26]

      HU K, LV Y X, YE F G, CHEN T, ZHAO S L. Anal. Chem., 2019, 91(9):6353-6362.

    27. [27]

      WANG S H, NIU H Y, CAO D, CAI Y Q. Talanta, 2019, 194:522-527.

    28. [28]

      ZHANG Y H, SONG Y Y, WU J, LI R J. HU D, LIN Z A, CAI Z W. Chem. Commun., 2019, 55(26):3745-3748.

    29. [29]

      ZHOU Z M, ZHONG W F, CUI K X, ZHUANG Z Y, LI L Y, BI J H, YU Y. Chem. Commun., 2018, 54(71):9977-9980.

    30. [30]

      LI J F, DING S Y, YANG Z L, BAI M L, ANEMA J R, WANG X, WANG A, WU D Y, REN B, HOU S M, WANDLOWSKI T, TIAN Z Q. J. Am. Chem. Soc., 2011, 133(40):15922-15925.

    31. [31]

      REN S F, ZHANG L, CHENG Z H, GUO Y L. J. Am. Soc. Mass Spectrom., 2005, 16(3):333-339.

    32. [32]

      LIU P, LI W Y, GUO S, XU D R, WANG M N, SHI J B, CAI Z X, TONG B, DONG Y P. ACS Appl. Mater. Interfaces, 2018, 10(28):23667-23673.

    33. [33]

      SHIH Y H, FU C P, LIU W L, LIN C H, HUANG H Y, MA S Q. Small, 2016, 12(15):2057-2066.

    34. [34]

      WANG H W, ZHAO X Y, HUANG Y, LIAO J C, LIU Y Q, PAN Y J. Analyst, 2020, 145(6):2168-2175.

    35. [35]

      ZHAO H F, LI Y Q, WANG J, CHENG M, ZHAO Z, ZHANG H N, WANAG C W, WANG J Y, QIAO Y, WANG J Z. ACS Appl. Mater. Interfaces, 2018, 10(43):37732-37742.

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    14. [14]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    17. [17]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    20. [20]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

Metrics
  • PDF Downloads(12)
  • Abstract views(625)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return