Citation: LIANG Qian,  LI Shu-Ming,  GUAN Xi-Liang,  DANG Fu-Quan,  ZHANG Zhi-Qi,  ZHANG Jing. A Covalent Organic Framework Material Decorated with Gold Nanoparticles as Novel Matrix for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Analysis of Small Organic Molecules[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1713-1721. doi: 10.19756/j.issn.0253-3820.211162 shu

A Covalent Organic Framework Material Decorated with Gold Nanoparticles as Novel Matrix for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry Analysis of Small Organic Molecules

  • Corresponding author: ZHANG Jing, zhangjing8902@snnu.edu.cn
  • Received Date: 4 March 2021
    Revised Date: 17 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074086), the Fundamental Research Funds for the Central Universities, China (No.gk202005003) and the Science and Technology Plan of Xi'an, China (No.GXYD5.3).

  • Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a promising analytical technology for large molecular weight molecules compounds, however, the interference of matrix-related ion peaks from the conventional matrix restricts the application of MALDI-MS in low molecular weight (LMW) organs (<500 Da). Although multiple exploration has been conducted in this region, it is still difficult to directly detect some molecules, such as low-molecular carbohydrate, which is a challenge to direct analysis without any enrichment because of its neutral property and difficulty in ionization. Herein, the in-situ Au nanoparticles (AuNPs) covalently embedded covalent organic frameworks (COFs) with sulfide cantilever (TTB-COF) were applied as a novel kind of matrix for direct analysis of various small organic molecules by MALDI-MS. The advantages of COFs such as abundant π-π periodic structure, suitable pore distribution, and increasing strong adsorption in the near UV region enable COFs be employed for various LMW organic analytes in cimprison with conventional matrix α-cyano-4-hydroxycinnamic acid (CHCA). Secondly, the addition of AuNPs not only facilitated the energy adsorption and desorption/ionization efficiency, but also provided an enrichment detection of sulfide molecules (LODs of thiabendazole as 5.0 nmol/L). Additionally, the synergistic effect between spatial confined COFs with sulfide cantilever and in-situ homogeneously distributed AuNPs solved the aggregation problem of inorganic nanoparticles during the evaporation preparation, which guaranteed the low background signals and improved the desorption/ionization efficiency. Therefore, after optimization of the synthetic conditions, Au-TTB-COF as a new matrix had an extremely low detection limit for small saccharides molecules as 11.0 nmol/L. Furthermore, Au-TTB-COF with strong salt tolerance and good reproducibility was applied to direct analysis of LMW molecules in the complex samples, such as glucose in serum samples, lactose in milk and thiabendazole in soft drinks. These results indicated that this metal-organic composites as MALDI-MS matrix had great potential in sensitive and specific detection of LMW organic chemicals in complex samples.
  • 加载中
    1. [1]

      TANAKA K, WAKI H, IDO Y, AKITA S, YOSHIDA Y, YOSHIDA T. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.

    2. [2]

      SUN C L, LIU W, MU Y, WANG X. Talanta, 2020, 209(1):120557-120566.

    3. [3]

      WU J, OUYANG D, HE Y T, SU H, YANG B C, LI J, SUN Q Q, LIN Z, CAI Z W. ACS Appl. Mater. Interfaces, 2019, 11(41):38255-38264.

    4. [4]

      ABDELHAMID H N. TrAC-Trends Anal. Chem., 2017, 89:68-98.

    5. [5]

      LI B, SUN R Y, ANDREW G, GE J Y, ZHANG Y, LI P, YANG H. Anal. Chem., 2019, 91(13):8221-8228.

    6. [6]

      DING F, QIAN Y N, DENG Z A, ZHANG J T, ZHOU Y C, YANG L, WANG F Y, WANG J P, ZHOU Z H, SHEN J L. Nanoscale, 2018, 10(46):22044-22054.

    7. [7]

      SEKULA J, NIZIOL J, RODE W, RUMAN T. Anal. Chim. Acta, 2015, 875(22):61-72.

    8. [8]

      DUTKIEWICZ E P, SU C H, LEE H J, HSU C C, YANG Y L. Plant J., 2021, 105(4):1123-1133.

    9. [9]

    10. [10]

    11. [11]

      PIRET G, DROBECQ H, COFFINIER Y, MELNYK O, BOUKHERROUB R. Langmuir, 2010, 26(2):1354-1361.

    12. [12]

      YANG H M, SU R, WISHBOK J S, LIU N, CHEN C B, LIU S Y, TANNENBAUM S R. Microchim. Acta, 2019, 186(2):104-112.

    13. [13]

      LEE D B, KIM Y, JALALUDUNA I, NGUYENA H Q, KIMB M, SEOB J, JANGS K S, KIM J. Food Chem., 2020, 342(10-11):128356-128365.

    14. [14]

      HOSU I S, SOBASZEK M, FICEK M, BOGDANOWICZ R, DROBECQ H, BOUSSEKEY L, BARRAS A, MELNYK O, BOUKHERROUB R, COFFINIER Y. Nanoscale, 2017, 9(27):9701-9715.

    15. [15]

      SU C L, TSENG W L. Anal. Chem., 2007, 79(4):1626-1633.

    16. [16]

      MCLEAN J A, STUMPO K A, RUSSELL D H. J. Am. Chem. Soc., 2005, 127(15):5304-5305.

    17. [17]

      MALEKI S, LEE D, KIM Y, KIM J. Int. J. Mass Spectrom., 2019, 442:44-50.

    18. [18]

      ZHANG J, ZHENG X L, NI Y L. J. Am. Soc. Mass Spectrom., 2015, 26(8):1291-1298.

    19. [19]

      NIU H Y, WANG S H, TAN Y X, SONG X W, CAI Y Q. RSC Adv., 2016, 6(102):99919-99923.

    20. [20]

      LIU H L, CHANG Y J, FAN T, GU Z Y. Chem. Commun., 2016, 52(88), 12984-12988.

    21. [21]

      FAN B Y, ZHOU H Y, WANG Y H, ZHAO Z Q, REN S Y, XU L, WU J, YAN H Y, GAO Z X. ACS Appl. Mater. Interfaces, 2020, 12(33):37793-37803.

    22. [22]

      SUN R M, HOU S Y, LUO C, JI X, WANG L N, MAI L Q, WANG C S. Nano Lett., 2020, 20(5):3880-3888.

    23. [23]

    24. [24]

      YUAN H Y, LI N X, LINGHU J J, DONG J Q, WANG Y X, KARMAKAR A, YUAN J R, LI M S, BUENCONESEJO P J S, LIU G L, CAI H, PENNYCOOK S J, SINGH N, ZHAO D. ACS Sens., 2020, 5(5):1474-1481.

    25. [25]

      ZHAI L P, YANG S, YANG X B, YE W Y, WANG J, CHEN W H, GUO Y, MI L W, WU Z J, SOUTIS C, XU Q, JIANG Z. Chem. Mater., 2020, 32(22):9747-9752.

    26. [26]

      HU K, LV Y X, YE F G, CHEN T, ZHAO S L. Anal. Chem., 2019, 91(9):6353-6362.

    27. [27]

      WANG S H, NIU H Y, CAO D, CAI Y Q. Talanta, 2019, 194:522-527.

    28. [28]

      ZHANG Y H, SONG Y Y, WU J, LI R J. HU D, LIN Z A, CAI Z W. Chem. Commun., 2019, 55(26):3745-3748.

    29. [29]

      ZHOU Z M, ZHONG W F, CUI K X, ZHUANG Z Y, LI L Y, BI J H, YU Y. Chem. Commun., 2018, 54(71):9977-9980.

    30. [30]

      LI J F, DING S Y, YANG Z L, BAI M L, ANEMA J R, WANG X, WANG A, WU D Y, REN B, HOU S M, WANDLOWSKI T, TIAN Z Q. J. Am. Chem. Soc., 2011, 133(40):15922-15925.

    31. [31]

      REN S F, ZHANG L, CHENG Z H, GUO Y L. J. Am. Soc. Mass Spectrom., 2005, 16(3):333-339.

    32. [32]

      LIU P, LI W Y, GUO S, XU D R, WANG M N, SHI J B, CAI Z X, TONG B, DONG Y P. ACS Appl. Mater. Interfaces, 2018, 10(28):23667-23673.

    33. [33]

      SHIH Y H, FU C P, LIU W L, LIN C H, HUANG H Y, MA S Q. Small, 2016, 12(15):2057-2066.

    34. [34]

      WANG H W, ZHAO X Y, HUANG Y, LIAO J C, LIU Y Q, PAN Y J. Analyst, 2020, 145(6):2168-2175.

    35. [35]

      ZHAO H F, LI Y Q, WANG J, CHENG M, ZHAO Z, ZHANG H N, WANAG C W, WANG J Y, QIAO Y, WANG J Z. ACS Appl. Mater. Interfaces, 2018, 10(43):37732-37742.

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    3. [3]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    6. [6]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    7. [7]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    8. [8]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    12. [12]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    13. [13]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(12)
  • Abstract views(830)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return