Citation: ZHANG Qian-Wen,  CHEN Qian,  BIAN Xiao-Jun,  YAN Juan. Aptasensor Based on Terminal Deoxynucleotidyl Transferase-Mediated Signal Amplification for Salmonella Typhimurium Detection[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1289-1299. doi: 10.19756/j.issn.0253-3820.211148 shu

Aptasensor Based on Terminal Deoxynucleotidyl Transferase-Mediated Signal Amplification for Salmonella Typhimurium Detection

  • Corresponding author: YAN Juan, j-yan@shou.edu.cn
  • Received Date: 1 March 2021
    Revised Date: 9 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775102) and Natural Science Foundation of Shanghai Municipal, China (No.20ZR1424100).

  • Salmonella typhimurium (S.typhimurium) is one of the most widespread pathogens causing foodborne diseases. In this work, S.typhimurium was used as the model bacteria. An aptasensor based on aldehyde magnetic beads (Mbs), enzyme digestion and terminal deoxynucleotidyl transferase-mediated signal amplification technique for simple colorimetric detection of S.typhimurium was developed. The Mbs@dsDNA hybrid complex was first prepared using the capture probe (CP) and aptamer. In the presence of S.typhimurium, the aptamer specifically bound to it, and released from the Mbs, which was then removed by magnetic separation. Subsequently, CP on Mbs folded back on itself owing to partially complementary bases and formed enzyme digestion recognition sites. 3'-OH terminal ends were obtained by EcoR I enzyme digestion. Deoxynucleotides were catalyzed to the 3'-OH end under the action of terminal deoxynucleotidyl transferase (TdT) to obtain products of single-stranded DNA (ssDNA). In the process, signal reporter molecules were embedded in the chain of ssDNA, thus obtaining amplified signals. In the absence of S.typhimurium, TdT signal amplification reaction could not be initiated because no released aptamer and blocked 3'-OH end CP. The aptasensor had a good response performance to S.typhimurium in the concentration range of 101-105 CFU/mL, and the detection limit was as low as 21 CFU/mL, showing high sensitivity and specificity. Moreover, the recovery of S.typhimurium in milk samples was 92.2%-112.7% (RSD<3%). The aptasensor showed potential application prospect in the food safety detection and supervision of other foodborne pathogenic microorganisms and other pollutants.
  • 加载中
    1. [1]

      HUANG F, XUE L, ZHANG H, GUO R, LI Y, LIAO M, WANG M, LIN J. Theranostics, 2018, 8(22): 6263-6273.

    2. [2]

      GE C, YUAN R, YI L, YANG J L, ZHANG H W, LI L X, NIAN W Q, YI G. J. Electroanal. Chem., 2018, 826: 174-180.

    3. [3]

      BAYRAÇ C, EYIDOǦAN F, AVNI ÖKTEM H. Biosens. Bioelectron., 2017, 98: 22-28.

    4. [4]

      WU S, DUAN N, QIU Y, LI J, WANG Z. Int. J. Food Microbiol., 2017, 261: 42-48.

    5. [5]

      GAO M, YU F, CHEN H, CHEN L. Anal. Chem., 2015, 87(7): 3631-3638.

    6. [6]

      DU F Y, GUO L, QIN Q, ZHENG X, RUAN G H, LI J P, LI G K. TrAC-Trends Anal. Chem., 2015, 67: 134-146.

    7. [7]

      ZHU P Y, SHANG Y, TIAN W Y, HUANG K L, LUO Y B, XU W T. Food Chem., 2017, 221: 1770-1777.

    8. [8]

      CHEN Z B, ZHANG C M, ZHOU T H, M H. Microchim. Acta, 2015, 182(5): 1003-1008.

    9. [9]

      NAKATSUKA N, YANG K, ABENDROTH J, CHEUNG K, XU X B, YANG H Y, ZHAO C Z, ZHU B, RIM Y, Y Y, WEISS P, STOJANOVIG' M, ANDREWS A. Science, 2018, 362(6412): 319-324.

    10. [10]

      MUNIANDY S, TEH S J, APPATURI J N, THONG K L, LAI C W, IBRAHIM F, LEO B F. Bioelectrochemistry, 2019, 127: 136-144.

    11. [11]

      LIN Z T, GU J H, LI C H, LEE T R, XIE L X, CHEN S, CAO P Y, JIANG S, YUAN Y L, HONG X, WANG H T, WANG D Z, WANG X F, JIANG G B, HEON M, WU T F. Adv. Mater., 2017, 29(31): 1702090.

    12. [12]

      BOSTAN H B, DANESH N M, KARIMI G, RAMEZANI M, SHAEGH S A M, YOUSSEFI K, CHARBGOO F, ABNOUS K, TAGHDISI S M. Biosens. Bioelectron., 2017, 98: 168-179.

    13. [13]

      YANG Q, ZHOU L Y, WU Y X, ZHANG K, CAO Y T, ZHOU Y, WU D Z, HU F T, GAN N. Anal. Chim. Acta, 2018, 1020: 1-8.

    14. [14]

      TIAN R, JI J Y, ZHOU Y Y, DU Y M, BIAN X J, ZHU F L, LIU G, DENG S Y, WAN Y, YAN J. Biosens. Bioelectron., 2020, 160: 112218.

    15. [15]

      ZHOU Y Y, FANG W N, LAI K Q, ZHU Y H, BIAN X J. Biosens. Bioelectron., 2019, 160: 112218.

    16. [16]

      LI A, ZUO P, YE B C. Anal. Biochem., 2021, 615: 114050.

    17. [17]

      LIU X H, LI L B, LUO L J, BI X Y, YAN H, LI X, YOU T Y. J. Colloid Interface Sci., 2021, 586: 103-109.

    18. [18]

      XIA W X, SHANGGUAN X Y, LI M, WANG Y, XI D M, SUN W, FAN J L, SHAO K, PENG X J. Chem. Sci., 2021, 12: 3314-3321.

    19. [19]

      VALLEJO-PEREZ M, TERNON C, SPINELLI N, MORISOT F, THEODOROU C, JAYAKUMAR G, HELLSTROM P E, MOUIS M, RAPENNE L, MESCOT X, SALEM B, STAMBOULI V. Nanomaterials, 2020, 10(9): 1842.

    20. [20]

    21. [21]

      WANG L, WANG R, WANG H, SLAVIK M, WEI H, LI Y. Anal. Biochem., 2017, 533: 34-40.

    22. [22]

      LIU Z L, LI W, NIE Z, PENG F F, HUANG Y, YAO S Z. Chem. Commun., 2014, 50(52): 6875-6878.

    23. [23]

      DU Y M, ZHOU Y Y, WEN Y L, BIAN X J, XIE Y Y, ZHANG W J, LIU G, YAN J. Microchim. Acta, 2019, 186: 840.

    24. [24]

      ZHOU Y Y, FANG W N, LAI K Q, ZHU Y H, BIAN X J, SHEN J L, LI Q, WANG L H, ZHANG W J, YAN J. Biosens. Bioelectron., 2019, 141: 11419.

    25. [25]

      XU F Z, LUO L, SHI H, HE X X, LEI Y L, TANG J L, HE D G, QIAO Z Z, WANG K M. Anal. Chim. Acta, 2018: 1010: 54-61.

    26. [26]

    27. [27]

      DUBOWSKI J J. Sens. Actuators, B, 2014, 207: 556-562.

    28. [28]

      BULARD E, BOUCHET-SPINELLI A, CHAUD P, ROGET A, CALEMCZUK R, FORT S, LIVACHE T. Anal. Chem., 2015, 87(3): 1804-1811.

    29. [29]

      OZALP V C, BAYRAMOGLU G, ERDEM Z, ARICA M Y. Anal. Chim. Acta, 2015, 853: 533-540.

    30. [30]

      WANG R J, XU Y, ZHANG T, JIANG Y. Anal. Methods., 2015, 7(5): 1701-1706.

    31. [31]

      LI Z, YANG H, SUN L, QI H, QIANG G, ZHANG C. Sens. Actuators, B, 2015, 210: 468-474.

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    3. [3]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    6. [6]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    7. [7]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    12. [12]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    15. [15]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    16. [16]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    17. [17]

      Linghua Chen . 基于双联动“三学”模式的食品专业分析化学教学改革. University Chemistry, 2025, 40(8): 78-91. doi: 10.12461/PKU.DXHX202409095

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    20. [20]

      Haifeng Liu Yong Xiao Teng Yuan Bimin Lin Yizhen Wang Hui Zeng . Exploration of Safety Facility Configuration in University Chemical Depot. University Chemistry, 2024, 39(10): 182-188. doi: 10.3866/PKU.DXHX202401036

Metrics
  • PDF Downloads(11)
  • Abstract views(1912)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return