Citation: ZHANG Qian-Wen,  CHEN Qian,  BIAN Xiao-Jun,  YAN Juan. Aptasensor Based on Terminal Deoxynucleotidyl Transferase-Mediated Signal Amplification for Salmonella Typhimurium Detection[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1289-1299. doi: 10.19756/j.issn.0253-3820.211148 shu

Aptasensor Based on Terminal Deoxynucleotidyl Transferase-Mediated Signal Amplification for Salmonella Typhimurium Detection

  • Corresponding author: YAN Juan, j-yan@shou.edu.cn
  • Received Date: 1 March 2021
    Revised Date: 9 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775102) and Natural Science Foundation of Shanghai Municipal, China (No.20ZR1424100).

  • Salmonella typhimurium (S.typhimurium) is one of the most widespread pathogens causing foodborne diseases. In this work, S.typhimurium was used as the model bacteria. An aptasensor based on aldehyde magnetic beads (Mbs), enzyme digestion and terminal deoxynucleotidyl transferase-mediated signal amplification technique for simple colorimetric detection of S.typhimurium was developed. The Mbs@dsDNA hybrid complex was first prepared using the capture probe (CP) and aptamer. In the presence of S.typhimurium, the aptamer specifically bound to it, and released from the Mbs, which was then removed by magnetic separation. Subsequently, CP on Mbs folded back on itself owing to partially complementary bases and formed enzyme digestion recognition sites. 3'-OH terminal ends were obtained by EcoR I enzyme digestion. Deoxynucleotides were catalyzed to the 3'-OH end under the action of terminal deoxynucleotidyl transferase (TdT) to obtain products of single-stranded DNA (ssDNA). In the process, signal reporter molecules were embedded in the chain of ssDNA, thus obtaining amplified signals. In the absence of S.typhimurium, TdT signal amplification reaction could not be initiated because no released aptamer and blocked 3'-OH end CP. The aptasensor had a good response performance to S.typhimurium in the concentration range of 101-105 CFU/mL, and the detection limit was as low as 21 CFU/mL, showing high sensitivity and specificity. Moreover, the recovery of S.typhimurium in milk samples was 92.2%-112.7% (RSD<3%). The aptasensor showed potential application prospect in the food safety detection and supervision of other foodborne pathogenic microorganisms and other pollutants.
  • 加载中
    1. [1]

      HUANG F, XUE L, ZHANG H, GUO R, LI Y, LIAO M, WANG M, LIN J. Theranostics, 2018, 8(22): 6263-6273.

    2. [2]

      GE C, YUAN R, YI L, YANG J L, ZHANG H W, LI L X, NIAN W Q, YI G. J. Electroanal. Chem., 2018, 826: 174-180.

    3. [3]

      BAYRAÇ C, EYIDOǦAN F, AVNI ÖKTEM H. Biosens. Bioelectron., 2017, 98: 22-28.

    4. [4]

      WU S, DUAN N, QIU Y, LI J, WANG Z. Int. J. Food Microbiol., 2017, 261: 42-48.

    5. [5]

      GAO M, YU F, CHEN H, CHEN L. Anal. Chem., 2015, 87(7): 3631-3638.

    6. [6]

      DU F Y, GUO L, QIN Q, ZHENG X, RUAN G H, LI J P, LI G K. TrAC-Trends Anal. Chem., 2015, 67: 134-146.

    7. [7]

      ZHU P Y, SHANG Y, TIAN W Y, HUANG K L, LUO Y B, XU W T. Food Chem., 2017, 221: 1770-1777.

    8. [8]

      CHEN Z B, ZHANG C M, ZHOU T H, M H. Microchim. Acta, 2015, 182(5): 1003-1008.

    9. [9]

      NAKATSUKA N, YANG K, ABENDROTH J, CHEUNG K, XU X B, YANG H Y, ZHAO C Z, ZHU B, RIM Y, Y Y, WEISS P, STOJANOVIG' M, ANDREWS A. Science, 2018, 362(6412): 319-324.

    10. [10]

      MUNIANDY S, TEH S J, APPATURI J N, THONG K L, LAI C W, IBRAHIM F, LEO B F. Bioelectrochemistry, 2019, 127: 136-144.

    11. [11]

      LIN Z T, GU J H, LI C H, LEE T R, XIE L X, CHEN S, CAO P Y, JIANG S, YUAN Y L, HONG X, WANG H T, WANG D Z, WANG X F, JIANG G B, HEON M, WU T F. Adv. Mater., 2017, 29(31): 1702090.

    12. [12]

      BOSTAN H B, DANESH N M, KARIMI G, RAMEZANI M, SHAEGH S A M, YOUSSEFI K, CHARBGOO F, ABNOUS K, TAGHDISI S M. Biosens. Bioelectron., 2017, 98: 168-179.

    13. [13]

      YANG Q, ZHOU L Y, WU Y X, ZHANG K, CAO Y T, ZHOU Y, WU D Z, HU F T, GAN N. Anal. Chim. Acta, 2018, 1020: 1-8.

    14. [14]

      TIAN R, JI J Y, ZHOU Y Y, DU Y M, BIAN X J, ZHU F L, LIU G, DENG S Y, WAN Y, YAN J. Biosens. Bioelectron., 2020, 160: 112218.

    15. [15]

      ZHOU Y Y, FANG W N, LAI K Q, ZHU Y H, BIAN X J. Biosens. Bioelectron., 2019, 160: 112218.

    16. [16]

      LI A, ZUO P, YE B C. Anal. Biochem., 2021, 615: 114050.

    17. [17]

      LIU X H, LI L B, LUO L J, BI X Y, YAN H, LI X, YOU T Y. J. Colloid Interface Sci., 2021, 586: 103-109.

    18. [18]

      XIA W X, SHANGGUAN X Y, LI M, WANG Y, XI D M, SUN W, FAN J L, SHAO K, PENG X J. Chem. Sci., 2021, 12: 3314-3321.

    19. [19]

      VALLEJO-PEREZ M, TERNON C, SPINELLI N, MORISOT F, THEODOROU C, JAYAKUMAR G, HELLSTROM P E, MOUIS M, RAPENNE L, MESCOT X, SALEM B, STAMBOULI V. Nanomaterials, 2020, 10(9): 1842.

    20. [20]

    21. [21]

      WANG L, WANG R, WANG H, SLAVIK M, WEI H, LI Y. Anal. Biochem., 2017, 533: 34-40.

    22. [22]

      LIU Z L, LI W, NIE Z, PENG F F, HUANG Y, YAO S Z. Chem. Commun., 2014, 50(52): 6875-6878.

    23. [23]

      DU Y M, ZHOU Y Y, WEN Y L, BIAN X J, XIE Y Y, ZHANG W J, LIU G, YAN J. Microchim. Acta, 2019, 186: 840.

    24. [24]

      ZHOU Y Y, FANG W N, LAI K Q, ZHU Y H, BIAN X J, SHEN J L, LI Q, WANG L H, ZHANG W J, YAN J. Biosens. Bioelectron., 2019, 141: 11419.

    25. [25]

      XU F Z, LUO L, SHI H, HE X X, LEI Y L, TANG J L, HE D G, QIAO Z Z, WANG K M. Anal. Chim. Acta, 2018: 1010: 54-61.

    26. [26]

    27. [27]

      DUBOWSKI J J. Sens. Actuators, B, 2014, 207: 556-562.

    28. [28]

      BULARD E, BOUCHET-SPINELLI A, CHAUD P, ROGET A, CALEMCZUK R, FORT S, LIVACHE T. Anal. Chem., 2015, 87(3): 1804-1811.

    29. [29]

      OZALP V C, BAYRAMOGLU G, ERDEM Z, ARICA M Y. Anal. Chim. Acta, 2015, 853: 533-540.

    30. [30]

      WANG R J, XU Y, ZHANG T, JIANG Y. Anal. Methods., 2015, 7(5): 1701-1706.

    31. [31]

      LI Z, YANG H, SUN L, QI H, QIANG G, ZHANG C. Sens. Actuators, B, 2015, 210: 468-474.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    9. [9]

      Simin Fang Hong Wu Sizhe Sheng Lingling Li Yuxi Wang Hongchun Li Jun Jiang . The Food Kingdom Lecture Series: The Science behind Color. University Chemistry, 2024, 39(9): 177-182. doi: 10.12461/PKU.DXHX202402012

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Haifeng Liu Yong Xiao Teng Yuan Bimin Lin Yizhen Wang Hui Zeng . Exploration of Safety Facility Configuration in University Chemical Depot. University Chemistry, 2024, 39(10): 182-188. doi: 10.3866/PKU.DXHX202401036

    17. [17]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    18. [18]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

Metrics
  • PDF Downloads(10)
  • Abstract views(1084)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return