Citation: WEN Sheng-Ping,  ZHU Jun-Jie. Recent Advances of Surface-Enhanced Raman Scattering-based Biosensing and Bioimaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1063-1075. doi: 10.19756/j.issn.0253-3820.211140 shu

Recent Advances of Surface-Enhanced Raman Scattering-based Biosensing and Bioimaging

  • Corresponding author: ZHU Jun-Jie, jjzhu@nju.edu.cn
  • Received Date: 24 February 2021
    Revised Date: 14 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21834004) and the State Key Laboratory of Analytical Chemistry for Life Science Foundation (No. SKLACLS2010).

  • As a significant spectral analysis tool, surface-enhanced Raman scattering (SERS) technique demonstrates several distinctive attributes like in situ nondestructive nature, finger recognition and single-molecule level detection, which has a great potential in the fields of food safety, environmental monitoring, and biological analysis, etc. Herein, this review focuses on the current progress of SERS-based biosensing and bioimaging, and further discusses the possible development tendencies and prospects of SERS on bioanalysis in coming future.
  • 加载中
    1. [1]

      ZHENG L, MAO H, ZHANG L Y, JIN Y, ZHOU Y J, PENG Y, DU S H. Anal. Methods, 2014, 6(15): 5925-5933.

    2. [2]

      NIE S M, EMORY S R. Science, 1997, 275(5303): 1102-1106.

    3. [3]

      FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Chem. Phys. Lett., 1974, 26(2): 163-166.

    4. [4]

      VENDRELL M, MAITI K K, DHALIWAL K, CHANG Y T. Trends Biotechnol., 2013, 31(4): 249-257.

    5. [5]

      ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10): 4946-4980.

    6. [6]

      LIN D D, WU Z L, LI S J, ZHAO W Q, MA C J, WANG J, JIANG Z M, ZHONG Z Y, ZHENG Y B, YANG X J. ACS Nano, 2017, 11(2): 1478-1487.

    7. [7]

      SHEN W, LIN X, JIANG C Y, LI C Y, LIN H X, HUANG J T, WANG S, LIU G K, YAN X M, ZHONG Q L, REN B. Angew. Chem., Int. Ed., 2015, 54(25): 7308-7312.

    8. [8]

      XU Q, LIU W, LI L, ZHOU F, ZHOU J, TIAN Y. Chem. Commun., 2017, 53(11): 1880-1883.

    9. [9]

      HUANG Z P, ZHANG R, CHEN H, WENG W H, LIN Q Y, DENG D, LI Z, KONG J L. Biosens. Bioelectron., 2019, 142: 111542.

    10. [10]

      WANG Q, HU Y J, JIANG N N, WANG J J, YU M, ZHUANG X M. Bioconjugate Chem., 2020, 31(3): 813-820.

    11. [11]

      SU Y Y, WU D, CHEN J, CHEN G, HU N, WANG H L, WANG P X, HAN H Y, LI G L, WU Y N. Anal. Chem., 2019, 91(18): 11687-11695.

    12. [12]

      WANG J R, XIA C, YANG L, LI Y F, LI C M, HUANG C Z. Anal. Chem., 2020, 92(5): 4046-4052.

    13. [13]

      HU S W, QIAO S, PAN J B, KANG B, XU J J, CHEN H Y. Talanta, 2018, 179: 9-14.

    14. [14]

      GAO X F, BORYCZKA J, KASANI S, WU N Q. Anal. Chem., 2021, 93(3): 1326-1332.

    15. [15]

      QU A H, WU X L, XU L G, LIU L Q, MA W, KUANG H, XU C L. Nanoscale, 2017, 9(11): 3865-3872.

    16. [16]

      LI Y, HAN H X, WU Y D, YU C F, REN C N, ZHANG X R. Biosens. Bioelectron., 2019, 142: 11154.

    17. [17]

      LUO X J, KANG T L, ZHU J T, WU P, CAI C X. ACS Sens., 2020, 5(11): 3639-3648.

    18. [18]

      LI Y Y, FANG Q Q, MIAO X X, ZHANG X Y, ZHAO Y, YAN J, ZHANG Y Q, WU R F, NIE B Q, HIRTZ M, LIU J. ACS Sens., 2019, 4(10): 2605-2614.

    19. [19]

      YE J, CHEN Y, LIU Z. Angew. Chem., Int. Ed., 2014, 53(39): 10386-10389.

    20. [20]

      TU X Y, MUHAMMAD P, LIU J, MA Y Y, WANG S S, YIN D Y, LIU Z. Anal. Chem., 2016, 88(24): 12363-12370.

    21. [21]

      LIU J, YIN D Y, WANG S S, CHEN H Y, LIU Z. Angew. Chem., Int. Ed., 2016, 55(42): 13215-13218.

    22. [22]

      MUHAMMAD P, TU X Y, LIU J, WANG Y J, LIU Z. ACS Appl. Mater. Interfaces, 2017, 9(13): 12082-12091.

    23. [23]

      ZHOU L L, WANG Y J, XING R R, CHEN J, LIU J, LI W, LIU Z. Biosens. Bioelectron., 2019, 145: 111729.

    24. [24]

      XING R R, WEN Y R, DONG Y R, WANG Y J, ZHANG Q, LIU Z. Anal. Chem., 2019, 91(15): 9993-10000.

    25. [25]

      MA Y Y, LI X L, LIU J, LI W, LIU Z. ACS Sens., 2020, 5(5): 1436-1444.

    26. [26]

      LIN X L, WANG Y Y, WANG L G, LU Y D, LI J, LU D C, ZHOU T, HUANG Z F, HUANG J, HUANG H F, QIU S F, CHEN R, LIN D, FENG S Y. Biosens. Bioelectron., 2019, 143: 111599.

    27. [27]

      GUO X T, LI L H, ARABI M, WANG X Y, WANG Y Q, CHEN L X. ACS Sens., 2020, 5(3): 601-619.

    28. [28]

      CHUONG T T, PALLAORO A, CHAVES C A, LI Z, LEE J, EISENSTEIN M, STUCKY G D, MOSKOVITS M, SOH H T. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(34): 9056-9061.

    29. [29]

      SONG C Y, YANG Y J, YANG B Y, SUN Y Z, ZHAO Y P, WANG L H. Nanoscale, 2016, 8(39): 17365-17373.

    30. [30]

      SU J, WANG D F, NÖRBEL L, SHEN J L, ZHAO Z H, DOU Y Z, PENG T H, SHI J Y, MATHUR S, FAN C H, SONG S P. Anal. Chem., 2017, 89(4): 2531-2538.

    31. [31]

      ZHOU W, TIAN Y F, YIN B C, YE B C. Anal. Chem., 2017, 89(11): 6120-6128.

    32. [32]

      LIU H Q, LI Q, LI M M, MA S S, LIU D B. Anal. Chem., 2017, 89(9): 4776-4780.

    33. [33]

      HE Y, YANG X, YUAN R, CHAI Y Q. Anal. Chem., 2017, 89(5): 2866-2872.

    34. [34]

      MA D D, HUANG C X, ZHENG J, TANG J R, LI J S, YANG J F, YANG R H. Biosens. Bioelectron., 2018, 101: 167-173.

    35. [35]

      HE Y, YANG X, YUAN R, CHAI Y Q. Anal. Chem., 2017, 89(16): 8538-8544.

    36. [36]

      YE S J, WANG M L, WANG Z X, ZHANG N, LUO X L. Chem. Commun., 2018, 54(56): 7786-7789.

    37. [37]

      PANG Y F, WANG C W, WANG J, SUN Z W, XIAO R, WANG S Q. Biosens. Bioelectron., 2016, 79: 574-580.

    38. [38]

      LUO W, WU C J, HUANG S Q, LUO X L, YUAN R, YANG X. Anal. Chem., 2020, 92(23): 15573-15578.

    39. [39]

      SUN Y D, LI T. Anal. Chem., 2018, 90(19): 11614-11621.

    40. [40]

      SI Y M, XU L, DENG T, ZHENG J, LI J S. ACS Sens., 2020, 5(12): 4009-4016.

    41. [41]

      LIU C H, CHEN C, LI S Z, DONG H F, DAI W H, XU T L, LIU Y, YANG F, ZHANG X J. Anal. Chem., 2018, 90(17): 10591-10599.

    42. [42]

      MA W, SUN M Z, FU P, LI S, XU L G, KUANG H, XU C L. Adv. Mater., 2017, 29(42): 1703410.

    43. [43]

      ZHOU W, LI Q, LIU H Q, YANG J, LIU D B. ACS Nano, 2017, 11(4): 3532-3541.

    44. [44]

      LIU J, WEN Y R, HE H, CHEN H Y, LIU Z. Chem. Sci., 2018, 9(36): 7241-7246.

    45. [45]

      GAO W C, LI B, YAO R Z, LI Z P, WANG X W, DONG X L, QU H, LI Q X, LI N, CHI H, ZHOU B, XIA Z P. Anal. Chem., 2017, 89(18): 9836-9842.

    46. [46]

      WANG H Y, ZHOU Y F, JIANG X X, SUN B, ZHU Y, WANG H, SU Y Y, HE Y. Angew. Chem., Int. Ed., 2015, 54(17): 5132-5136.

    47. [47]

      GAO X, YIN Y L, WU H T, HAO Z, LI J J, WANG S, LIU Y Q. Anal. Chem., 2021, 93(3): 1569-1577.

    48. [48]

      YAO L, YE Y W, TENG J, XUE F, PAN D D, LI B G, CHEN W. Anal. Chem., 2017, 89(18): 9775-9780.

    49. [49]

      FENG J S, DE LA FUENTE-NUNEZ C, TRIMBLE M J, XU J, HANCOCK R E W, LU X N. Chem. Commun., 2015, 51(43): 8966-8969.

    50. [50]

      ZHU T F, HU Y J, YANG K, DONG N, YU M, JIANG N N. Microchim. Acta, 2018, 185: 30-38.

    51. [51]

      ZHANG H, MA X Y, LIU Y, DUAN N, WU S J, WANG Z P, XU B C. Biosens. Bioelectron., 2015, 74: 872-877.

    52. [52]

      NENG J, LI Y N, DRISCOLL A J, WILSON W C, JOHNSON P A. J. Agric. Food Chem., 2018, 66(22): 5707-5712.

    53. [53]

      KEARNS H, GOODACRE R, JAMIESON L E, GRAHAM D, FAULDS K. Anal. Chem., 2017, 89(23): 12666-12673.

    54. [54]

      WU L, XIAO X Y, CHEN K, YIN W M, LI Q, WANG P, LU Z C, MA J, HAN H Y. Biosens. Bioelectron., 2017, 92: 321-327.

    55. [55]

      YOU S M, LUO K, JUNG J Y, JEONG K B, LEE E S, OH M H, KIM Y R. ACS Appl. Mater. Interfaces, 2020, 12(16): 18292-18300.

    56. [56]

      KO J, PARK S G, LEE S, WANG X K, MUN C, KIM S, KIM D H, CHOO J. ACS Appl. Mater. Interfaces, 2018, 10(8): 6831-6840.

    57. [57]

      LIU H B, DU X J, ZANG Y X, LI P, WANG S. J. Agric. Food Chem., 2017, 65(47): 10290-10299.

    58. [58]

      LEBEDEV N, GRIVA I, DRESSICK W J, PHELPS J, JOHNSON J E, MESHCHERIAKOVA Y, LOMONOSSOFF G P, SOTO C M. Biosens. Bioelectron., 2016, 77: 306-314.

    59. [59]

      PAUL A M, FAN Z, SINHA S S, SHI Y L, LE L D, BAI F W, RAY P C. J. Phys. Chem. C, 2015, 119(41): 23669-23675.

    60. [60]

      LIM J Y, NAM J S, YANG S E, SHIN H, JANG Y H, BAE G U, KANG T, LIM K I, CHOI Y. Anal. Chem., 2015, 87(23): 11652-11659.

    61. [61]

      ZHANG X G, ZHANG X L, LUO C L, LIU Z Q, CHEN Y Y, DONG S L, JIANG C Z, YANG S K, WANG F B, XIAO X H. Small, 2019, 15(11): 1805516.

    62. [62]

      GAHLAUT S K, SAVARGAONKAR D, SHARAN C, YADAV S, MISHRA P, SINGH J P. Anal. Chem., 2020, 92(3): 2527-2534.

    63. [63]

      WANG C W, WANG C G, WANG X L, WANG K L, ZHU Y H, RONG Z, WANG W Y, XIAO R, WANG S Q. ACS Appl. Mater. Interfaces, 2019, 11(21): 19495-19505.

    64. [64]

      SHAN B B, PU Y H, CHEN Y F, LIAO M L, LI M. Coord. Chem. Rev., 2018, 371: 11-37.

    65. [65]

      WANG Y Q, YAN B, CHEN L X. Chem. Rev., 2013, 113(3): 1391-1428.

    66. [66]

      ZHANG L Q, WAN S, JIANG Y, WANG Y Y, FU T, LIU Q L, CAO Z J, QIU L P, TAN W H. J. Am. Chem. Soc., 2017, 139(7): 2532-2540.

    67. [67]

      MA H T, LIU J P, ALI M M, MAHMOOD M A I, LABANIEH L, LU M R, IQBAL S M, ZHANG Q, ZHAO W A, WAN Y. Chem. Soc. Rev., 2015, 44(5): 1240-1256.

    68. [68]

      ZHENG X S, ZONG C, WANG X, REN B. Anal. Chem., 2019, 91(13): 8383-8389.

    69. [69]

      ZHANG J H, ZHANG H, YE S J. WANG X X, MA L D. Anal. Chem., 2021, 93(3): 1466-1471.

    70. [70]

      ZHOU W, LI Q, LIU H Q, YANG J, LIU D B. ACS Nano, 2017, 11(4): 3532-3541.

    71. [71]

      PENG R Y, SI Y M, DENG T, ZHENG J, LI J S, YANG R H, TAN W H. Chem. Commun., 2016, 52(55): 8553-8556.

    72. [72]

      REZA K K, WANG J, VAIDYANATHAN R, DEY S, WANG Y L, TRAU M. Small, 2017, 13(9): 1602902.

    73. [73]

      MA S S, LI Q, YIN Y M, YANG J, LIU D B. Small, 2017, 13(15): 1603340.

    74. [74]

      HU C Y, SHEN J L, YAN J, ZHONG J, QIN W W, LIU R, ALDALBAHI A, ZUO X L, SONG S P, FAN C H, HE D D. Nanoscale, 2016, 8(4): 2090-2096.

    75. [75]

      LI M, BANERJEE S R, ZHENG C, POMPER M G, BARMAN I. Chem. Sci., 2016, 7(11): 6779-6785.

    76. [76]

      PAL S, HARMSEN S, OSELEDCHYK A, HSU H T, KIRCHER M F. Adv. Funct. Mater., 2017, 27(32): 1606632.

    77. [77]

      LAI X F, ZOU Y X, WANG S S, ZHENG M J, HU X X, LIANG H, XU Y T, WANG X W, DING D, CHEN L, CHEN Z, TAN W H. Anal. Chem., 2016, 88(10): 5385-5391.

    78. [78]

      WANG S S, LIU Z K, ZOU Y X, LAI X F, DING D, CHEN L, ZHANG L Q, WU Y, CHEN Z, TAN W H. Analyst, 2016, 141(11): 3337-3342.

    79. [79]

      ZHANG Z Y, WANG M, GAO D L, LUO D, LIU Q H, YANG J, LI Y. Langmuir, 2016, 32(40): 10253-10258.

    80. [80]

      LI S L, CHEN T, WANG Y X, LIU L B, LV F T, LI Z L, HUANG Y Y, SCHANZE K S, WANG S. Angew. Chem., Int. Ed., 2017, 56(43): 13455-13458.

    81. [81]

      CHEN Y, REN J Q, ZHANG X G, WU D Y, SHEN A G, HU J M. Anal. Chem., 2016, 88(12): 6115-6119.

    82. [82]

      SONG W Y, DING L, CHEN Y L, JU H X. Chem. Commun., 2016, 52(70): 10640-10643.

    83. [83]

      DI H X, LIU H Q, LI M M, LI J, LIU D B. Anal. Chem., 2017, 89(11): 5874-5881.

    84. [84]

      CHEN Y L, DING L, SONG W Y, YANG M, JU H X. Chem. Sci., 2016, 7(1): 569-574.

    85. [85]

      ZHANG Y F, LIU H R, TANG J L, LI Z Y, ZHOU X Y, ZHANG R, CHEN L, MAO Y, LI C. ACS Appl. Mater. Interfaces, 2017, 9(21): 17769-17776.

    86. [86]

      ZHANG Y Q, QIU Y Y, LIN L, GU H C, XIAO Z Y, YE J. ACS Appl. Mater. Interfaces, 2017, 9(4): 3995-4005.

    87. [87]

      ANDREOU C, NEUSCHMELTING V, TSCHAHARGANEH D F, HUANG C H, OSELEDCHYK A, IACONO P, KARABEBER H, COLEN R R, MANNELLI L, LOWE S W, KIRCHER M F. ACS Nano, 2016, 10(5): 5015-5026.

    88. [88]

      NEUSCHMELTING V, HARMSEN S, BEZIERE N, LOCKAU H, HSU H T, HUANG R, RAZANSKY D, NTZIACHRISTOS V, KIRCHER M F. Small, 2018, 14(23): 1800740.

    89. [89]

      CHA M G, LEE S, PARK S, KANG H, LEE S G, JEONG C, LEE Y S, KIM C, JEONG D H. Nanoscale, 2017, 9(34): 12556-12564.

    90. [90]

      JU K Y, LEE S, PYO J, CHOO J, LEE J K. Small, 2015, 11(1): 84-89.

    91. [91]

      ZHANG Z Y, LIU Q H, GAO D L, LUO D, NIU Y, YANG J, LI Y. Small, 2015, 11(25): 3000-3005.

    92. [92]

      PAL S, RAY A, ANDREOU C, ZHOU Y D, RAKSHIT T, WLODARCZYK M, MAEDA M, TOLEDO-CROW R, BERISHA N, YANG J, HSU H T, OSELEDCHYK A, MONDAL J, ZOU S L, KIRCHER M F. Nat. Commun., 2019, 10: 1926.

    93. [93]

      ZHANG B L, WANG J P, SUN J Y, WANG Y H, CHOU T, ZHANG Q, SHAH H R, REN L, WANG H J. Adv. Therap., 2020, 3(10): 2000114.

    94. [94]

      LIU J, ZHENG T T, TIAN Y. Angew. Chem., Int. Ed., 2019, 58(23): 7757-7761.

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    3. [3]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    12. [12]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    20. [20]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

Metrics
  • PDF Downloads(0)
  • Abstract views(694)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return