Citation: DU Feng-Luan,  ZHAO Chun-Qin,  DING Shou-Nian. Construction and Recent Progress of Z-scheme-based Photoelectrochemical Sensor[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1247-1257. doi: 10.19756/j.issn.0253-3820.211135 shu

Construction and Recent Progress of Z-scheme-based Photoelectrochemical Sensor

  • Corresponding author: DING Shou-Nian, snding@seu.edu.cn
  • Received Date: 22 February 2021
    Revised Date: 7 May 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFA0700404), the National Natural Science Foundation of China (Nos.21535003, 21575022), the Key Research & Development Plan of Jiangsu Province (No.BE2018617), the Fundamental Research Funds for the Central Universities (No.2242016K41055) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.KYCX19_0073).

  • The route of electron transfer between photoactive semiconductors has great impact on the photoelectric performance of photoelectrochemical (PEC) sensor. Thus, an effective electron transfer pathway is of great significance for enhancing the photoelectric conversion efficiency and improving the sensitivity of the sensor. Z-scheme mechanism can improve the migration efficiency of photogenerated carriers while retaining maximized redox capacity of the photoactive semiconductor. Therefore, the construction and design of the Z-scheme-based PEC sensing system has attracted the attention of many researchers. In this review, the construction and recent progress of Z-scheme-based PEC sensor are summarized in view of the electron transfer mechanism and sensing strategies. Firstly, we present the configuration of Z-scheme-based PEC sensor system by summarizing the two electron transfer paths of Z-scheme system with electronic mediator and direct Z-scheme system. Then, the as-reported sensing strategies regarding Z-scheme system are systematically summarized into four aspects, including steric resistance effect, introduction of new energy level, target inhibition of carrier recombination/migration, and target-induced of Z-scheme system formation/transformation. Finally, future outlooks toward Z-scheme PEC sensor are highlighted.
  • 加载中
    1. [1]

      ZHAO W W, XU J J, CHEN H Y. Chem. Rev., 2014, 114(15): 7421-7441.

    2. [2]

      ZHAO W W, XU J J, CHEN H Y. Anal. Chem., 2018, 90(1): 615-627.

    3. [3]

      LI H, LI Y, LI J, YANG F, XU L, WANG W, YAO X, YIN Y. Anal. Chem., 2020, 92(5): 4094-4100.

    4. [4]

      SUN J, LI L, KONG Q, ZHANG Y, ZHAO P, GE S, CUI K, YU J. Biosens. Bioelectron., 2019, 133: 32-38.

    5. [5]

      WANG J, SONG M, HU C, WU K. Anal. Chem., 2018, 90(15): 9366-9373.

    6. [6]

      YAN K, JI W, ZHU Y, CHEN F, ZHANG J. Chem. Commun., 2019, 55(80): 12040-12043.

    7. [7]

      TAN J, PENG B, TANG L, FENG C, WANG J, YU J, YU J, OUYANG X, ZHU X. Biosens. Bioelectron., 2019, 142: 111546.

    8. [8]

      QIU Z, TANG D. J. Mater. Chem. B, 2020, 8(13): 2541-2561.

    9. [9]

      JIAN J, JIANG G, WAN DE KROL R, WEI B, WANG H. Nano Energy, 2018, 51: 457-480.

    10. [10]

      ZANG Y, FAN J, JU Y, XUE H, PANG H. Chem. -Eur. J., 2018, 24(53): 14010-14027.

    11. [11]

      DONG F, ZHAO Z, XIONG T, NI Z, ZHANG W, SUN Y, HO W K. ACS Appl. Mater. Interfaces, 2013, 5(21): 11392-11401.

    12. [12]

      XU R, WEI D, DU B, CAO W, FAN D, ZHANG Y, WEI Q, JU H. Biosens. Bioelectron., 2018, 122: 37-42.

    13. [13]

    14. [14]

    15. [15]

      QIU Z, TANG D. J. Mater. Chem. B, 2020, 8(13): 2541-2561.

    16. [16]

      ZHU Y, XU Z, YAN K, ZHAO H, ZHANG J. ACS Appl. Mater. Interfaces, 2017, 9(46): 40452-40460.

    17. [17]

      BARD A J J. Photochem., 1979, 10(1): 59-75.

    18. [18]

      TACHIBANA Y, VAYSSIERES L, DURRANT J R. Nat. Photonics, 2012, 6(8): 511-518.

    19. [19]

      TANG L, OUYANG X, PENG B, ZENG G, ZHU Y, YU J, FENG C, FANG S, ZHU X, TAN J. Nanoscale, 2019, 11(25): 12198-12209.

    20. [20]

      YE R, FANG H, ZHENG Y Z, LI N, WANG Y, TAO X. ACS Appl. Mater. Interfaces, 2016, 8(22): 13879-13889.

    21. [21]

      ZHAO W W, XU J J, CHEN H Y. Chem. Soc. Rev., 2015, 44(3): 729-741.

    22. [22]

      SHU J, TANG D. Anal. Chem., 2020, 92(1): 363-377.

    23. [23]

      ZANG Y, LEI J, JU H. Biosens. Bioelectron., 2017, 96: 8-16.

    24. [24]

      TU W, WANG Z, DAI Z. TrAC-Trends Anal. Chem., 2018, 105: 470-483.

    25. [25]

      ZHOU P, YU J, JARONIEC M. Adv. Mater., 2014, 26(29): 4920-4935.

    26. [26]

      YANG R, ZOU K, ZHANG X, DU C, CHEN J. Chem. Commun., 2019, 55(61): 8939-8942.

    27. [27]

      WANG H, ZHANG B, XI J, ZHAO F, ZENG B. Biosens. Bioelectron., 2019, 141: 111443.

    28. [28]

      XU Q, ZHANG L, YU J, WAGEH S, AL-GHAMDI A A, JARONIEC M. Mater. Today, 2018, 21(10): 1042-1063.

    29. [29]

      NG B J, PUTRI L K, KONG X Y, TEH Y W, PASBAKHSH P, CHAI S P. Adv. Sci., 2020, 7(7): 1903171.

    30. [30]

      LI H, TU W, ZHOU Y, ZOU Z. Adv. Sci., 2016, 3(11): 1500389.

    31. [31]

      LI H, YI H, QUAN X, CHEN S, ZHANG Y. ACS Appl. Mater. Interfaces, 2016, 8(3): 2111-2119.

    32. [32]

      LU D, WANG H, ZHAO X, KONDAMAREDDY K K, DING J, LI C, FANG P. ACS Sustain. Chem. Eng., 2017, 5(2): 1436-1445.

    33. [33]

      LI W, FENG C, DAI S, YUE J, HUA F, HOU H. Appl. Catal., B, 2015, 168: 465-471.

    34. [34]

      ZENG R, LUO Z, SU L, ZHANG L, TANG D, NIESSNER R, KNOPP D. Anal. Chem., 2019, 91(3): 2447-2454.

    35. [35]

      WU X, ZHAO J, WANG L, HAN M, ZHANG M, WANG H, HUANG H, LIU Y, KANG Z. Appl. Catal., B, 2017, 206: 501-509.

    36. [36]

      IWASE A, NG Y H, ISHIGURO Y, KUDO A, AMAL R. J. Am. Chem. Soc., 2011, 133(29): 11054-11057.

    37. [37]

      CHEN G, WANG H, WEI X, WU Y, GU W, HU L, XU D, ZHU C. Sens. Actuators, B, 2020, 312: 127951.

    38. [38]

      MENG L, XIAO K, ZHANG X, DU C, CHEN J. Sens. Actuators, B, 2020, 305: 127480.

    39. [39]

      YU J G, WANG S H, LOW J X, XIAO W. Phys. Chem. Chem. Phys., 2013, 15(39): 16883-16890.

    40. [40]

      HUANG D L, CHEN S, ZENG G M, GONG X M, ZHOU C Y, CHENG M, XUE W J, YAN X L, LI J. Coord. Chem. Rev., 2019, 385: 44-80.

    41. [41]

      LI J, LIU X, ZHANG J. ChemSusChem, 2020, 13(11): 2996-3004.

    42. [42]

      XIA X, SONG M, WANG H, ZHANG X, SUI N, ZHANG Q, COLVIN V L, YU W W. Nanoscale, 2019, 11(23): 11071-11082.

    43. [43]

      YOU F, ZHU M, DING L, XU Y, WANG K. Biosens. Bioelectron., 2019, 130: 230-235.

    44. [44]

      LIU D, XU X, SHEN X, LUO L, LI L, YAN X, YOU T. Sens. Actuators, B, 2020, 305: 127210.

    45. [45]

      ZHAO C Q, DING S N, XU J J, CHEN H Y. ACS Appl. Nano Mater., 2020, 3(11): 11489-11496.

    46. [46]

      ZHANG B, WANG H, XI J, ZHAO F, ZENG B. Sens. Actuators, B, 2019, 298: 126835.

    47. [47]

      ZHAO W W, XU J J, CHEN H Y. Biosens. Bioelectron., 2017, 92: 294-304.

    48. [48]

      ZHAO W W, XU J J, CHEN H Y. Analyst, 2016, 141(14): 4262-4271.

    49. [49]

      ZHAO C Q, DING S N. Coord. Chem. Rev., 2019, 391: 1-14.

    50. [50]

      ZHAO W W, MA Z Y, YU P P, DONG X Y, XU J J, CHEN H Y. Anal. Chem., 2012, 84(2): 917-923.

    51. [51]

      FAN G C, HAN L, ZHU H, ZHANG J R, ZHU J J. Anal. Chem., 2014, 86(24): 12398-12405.

    52. [52]

      YANG H, ZHANG Y, ZHANG L, CUI K, GE S, HUANG J, YU J. Anal. Chem., 2018, 90(12): 7212-7220.

    53. [53]

      LIU Q, HUAN J, HAO N, QIAN J, MAO H, WANG K. ACS Appl. Mater. Interfaces, 2017, 9(21): 18369-18376.

    54. [54]

      WANG H, ZHANG B, ZHAO F, ZENG B. ACS Appl. Mater. Interfaces, 2018, 10(41): 35281-35288.

    55. [55]

      ZHANG K, LV S, LIN Z, TANG D. Biosens. Bioelectron., 2017, 95: 34-40.

    56. [56]

      GONG L, DAI H, ZHANG S, LIN Y. Anal. Chem., 2016, 88(11): 5775-5782.

    57. [57]

      MENG L, XIAO K, LI Y, ZHANG X, DU C, CHEN J. Chem. Commun., 2019, 55(56): 8166-8169.

    58. [58]

      ZHANG L, LUO Z, ZENG R, ZHOU Q, TANG D. Biosens. Bioelectron., 2019, 134: 1-7.

    59. [59]

      WANG H, YE H, ZHANG B, ZHAO F, ZENG B. J. Mater. Chem. A, 2017, 5(21): 10599-10608.

    60. [60]

      ZENG H, LIU Y, XU Z, WANG Y, CHAI Y, YUAN R, LIU H. Chem. Commun., 2019, 55(79): 11940-11943.

    61. [61]

      RUAN Y F, ZHANG N, ZHU Y C, ZHAO W W, XU J J, CHEN H Y. Anal. Chem., 2017, 89(15): 7869-7875.

    62. [62]

      XU L, LING S, LI H, YAN P, XIA J, QIU J, WANG K, LI H, YUAN S. Sens. Actuators, B, 2017, 240: 308-314.

    63. [63]

      WANG Q, WU X, ZHANG L. Chem. Eng. J., 2019, 361: 398-407.

    64. [64]

      TANG L, OUYANG X, PENG B, ZENG G, ZHU Y, YU J, FENG C, FANG S, ZHU X, TAN J. Nanoscale, 2019, 11(25): 12198-12209.

    65. [65]

      WANG H, ZHANG B, ZHAO F, ZENG B. ACS Appl. Mater. Interfaces, 2018, 10(41): 35281-35288.

    66. [66]

      CHEN S H, XIAO X Y, LI P H, LI Y X, YANG M, GUO Z, HUANG X J. Environ. Sci.: Nano, 2020, 7(3): 753-763.

    67. [67]

      LV S, ZHANG K, ZENG Y, TANG D. Anal. Chem., 2018, 90(11): 7086-7093.

    68. [68]

      JING C, ZHAO Y, LIN H, XU B, CHEN S. J. Solid State Chem., 2013, 206(10): 38-44.

    69. [69]

      LI J J, XIE Y L, ZHONG Y J, HU Y. J. Mater. Chem. A, 2015, 3(10): 5474-5481.

    70. [70]

      YU S Y, MEI L P, XU Y T, XUE T Y, FAN G C, HAN D M, CHEN G, ZHAO W W. Anal. Chem., 2019, 91(6): 3800-3804.

    71. [71]

      WANG Z Z, LI J, TU W W, WANG H S, WANG Z Y, DAI Z H. ACS Appl. Mater. Interfaces, 2020, 12(24): 26905-26913.

    72. [72]

      ZHAO L F, JI J J, SHEN Y F, WU K Q, ZHAO T T, YANG H, LV Y Q, LIU S Q, ZHANG Y J. Chem. -Eur. J., 2019, 25(68): 15680-15686.

    73. [73]

      YANG H, WANG Z, LIU S Q, SHEN Y F, ZHANG Y J. Chin. Chem. Lett., 2020, 31(12): 3047-3054.

  • 加载中
    1. [1]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    20. [20]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

Metrics
  • PDF Downloads(11)
  • Abstract views(745)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return