Citation: ZHAO Jian,  ZHANG Lin-Nan,  LEI Yong-Qian,  PAN Jia-Chuan,  GUO Peng-Ran. Determination of Trace Total Mercury in Water by Headspace Solid Phase Microextraction and Electropyrolytic Zeeman Atomic Absorption Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1393-1401. doi: 10.19756/j.issn.0253-3820.211133 shu

Determination of Trace Total Mercury in Water by Headspace Solid Phase Microextraction and Electropyrolytic Zeeman Atomic Absorption Spectrometry

  • Corresponding author: GUO Peng-Ran, prguo@fenxi.com.cn
  • Received Date: 20 February 2021
    Revised Date: 27 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21777150), the Guangdong Provincial Key Research Development Programme (No.2020B1111350002) and the Scientific and Technological Project of Guangzhou (No.201803030042).

  • A new and portable method for extraction, enrichment and detection of trace total mercury in water by a headspace solid phase microextraction probe loaded with gold and wood stickswas developed. The surface morphology and elemental composition of the gold-loaded probe were characterized by scanning electron microscopy and energy dispersive analysis (SEM-EDS). The effects of solution pH, salinity, dissolved organic matter (DOM) concentration and co-existing metal ions on SnCl2 reduction of different forms of mercury (inorganic mercury, methyl mercury and ethyl mercury) were investigated. The results showed that the pH, salinity and DOM concentration of the solution had only weak effect on the reduction of different forms of mercury by SnCl2. Except for Cu2+, low concentration of metal ions (≤1 mg/L) had little effect on reduction of different forms of mercuryby SnCl2. High concentrations (100 mg/L) of Fe3+, Zn2+, Ni2+, As3+, Cr3+, Cu2+, V5+ and Pb2+ inhibited the reduction of organic mercury to different degrees by SnCl2, especially V5+ and Pb2+. The relative standard deviations (RSD, n=10) for reduction of inorganic mercury, MeHg and EtHg in solution by SnCl2 were 3.0 %, 3.7 % and 3.5 %, respectively, indicating that the stability of three forms of mercury in SnCl2 solution was good. The detection limit (LOD) of the method for total mercury in water was 0.03 μg/L, the RSD was less than 6.1% (n=6) and the standard recoveries was between 82.0% and 90.0%. This method was simple, less time-consuming and stable and could be applied to the detection of trace total mercury in surface water and tap water.
  • 加载中
    1. [1]

      PEREZ P A, HINTELMANN H, LOBOS G, BRAVO M A. Chemosphere, 2019, 237: 124535.

    2. [2]

      YANG J Y, JIA X D, WANG X Y, CHEN M L, YANG T, WANG J H. Analyst, 2020, 145(15): 5200-5205.

    3. [3]

      RICE K M, WALKER E M, WU M Z, GILLETTE C, BLOUGH E R. J. Prev. Med. Public Health., 2014, 47(2): 74-83.

    4. [4]

    5. [5]

      RUMAYOR M, GALLEGO J R, RODRIGUEZ-VALDES E, DIAZ-SOMOANO M. J. Hazard. Mater., 2017, 325: 1-7.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      LEI Y Q, ZHANG F, GUAN P, GUO P R, WANG G H. New J. Chem., 2020, 44(33): 14299-14305.

    10. [10]

    11. [11]

      SOUZA J P, CERVEIRA C, MICELI T M, MORAES D P, MESKO M F, PEREIRA J S F. Food Chem., 2020, 321: 126715.

    12. [12]

      ZHENG H, HONG J J, LUO X L, LI S, WANG M X, YANG B Y, WANG M. Microchem. J., 2019, 145: 806-812.

    13. [13]

      HE Z, LIN Y, WANG Y, HE B, HOU X D, ZHENG C B. Anal. Chem., 2020, 92(14): 9583-9590.

    14. [14]

      ANNALY CRUZ SOTOLONGO, MESSINA M M, IBANEZ F J, WUILLOUD R G. Talanta, 2020, 210: 120614.

    15. [15]

      JIA X Y, GONG D R, ZHAO J Y, REN H Y, WANG J N, ZHANG X. Microchim. Acta, 2018, 185(4): 228.

    16. [16]

      ZHANG D Y, YANG S W, MA Q F, SUN J N, CHENG H Y, WANG Y C, LIU J H. Food Chem., 2020, 313: 126119.

    17. [17]

      MA S S, HE M, CHEN B B, DENG W C, ZHENG Q, HU B. Talanta, 2016, 146: 93-99.

    18. [18]

      XU Y W, LI Z H, ZHANG W, SHI J Y, ZOU X B, HUANG X W, HU X T, WANG X. Anal. Lett., 2019, 52(18): 2938-2950.

    19. [19]

      JEROMIYAS N, ELAIYAPPILLAI E, KUMARA S, HUANGS T, MANI V. J. Taiwan Inst. Chem. Eng., 2019, 95: 466-474.

    20. [20]

      RATNER N, MANDLE D. Anal. Chem., 2015, 87(10): 5148-5155.

    21. [21]

    22. [22]

      KOKILAVANI S, SYED A, RAJUL L, MARRAIKI N, AL-RASHED S, ELGORBANA M, THOMASA M, KHANS S. Spectrochim. Acta, Part A, 2020, 242: 118738.

    23. [23]

      LIMJ W, KIMT Y, CHOIS W, WOOM A. Food Chem., 2019, 300: 125177.

    24. [24]

      SUVARAPU L N, BAEK S O. Int. J. Anal. Chem., 2017, 2017: 3624015.

    25. [25]

      LU X, ZHAO J T, LIANG X J, ZHANG L J, LIU Y R, YIN X P, Li X K, GU B H. Environ.Sci. Technol. Lett., 2019, 6(3): 165-170.

    26. [26]

      JIA X Y, ZHAO J Y, REN H Y, WANG J N, HONG Z X, ZHANG X. Talanta, 2019, 196: 592-599.

    27. [27]

      AMDE M, YIN Y G, ZHANG D, LIU J F. Chem. Speciation Bioavailability, 2016, 28(1-4): 51-65.

    28. [28]

      BELARDI R P, PAWLISZYN J. Water Qual. Res. J. Can., 1989, 24(1): 179-191.

    29. [29]

      KIM U J, KARTHIKRAJ R. J. Sep. Sci., 2020, 44(1): 1-64.

    30. [30]

      XIE X T, WANG J H, ZHENG J, HUANG J L, NI C Y, CHENG J, HAO Z P, OUYANG G F. Anal. Chim. Acta, 2018, 1029: 30-36.

    31. [31]

      DIEZ S, BAYONA J M. Talanta, 2008, 77(1): 21-27.

    32. [32]

      THONGSAW A, SANANMUANG R, UDNAN Y, ROSS G M, CHAIYASITH W C. Spectrochim. Acta, Part B, 2019, 160: 105685.

    33. [33]

      LI J X, HE Q Q, WU L J, SUN J, ZHENG F, LI L, LIU W Y, LIU J. Microchem. J., 2020, 153: 104459.

    34. [34]

      XU M W, JIN Z, YANG Z Y, RAO J J, CHEN B C. Food. Chem., 2020, 307: 125542.

    35. [35]

      ABUJABER F, JIMENEZ-MORENO M, BERNARDO F J G, MARTIN-DOIMEADIOS R C.Microchim. Acta, 2019, 186(7): 400.

    36. [36]

      LI D, LI Y B, WANG X L. J. Environ. Sci., 2018, 68: 177-184.

    37. [37]

    38. [38]

      SONG X X, YE M D, TANG X J, WANG C J. J. Sep. Sci., 2013, 36(2): 414-420.

    39. [39]

    40. [40]

      MANIKANDAN R, DEEPA P N, NARAYANAN S S. Ionics, 2019, 25(3): 1387-1394.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    9. [9]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    13. [13]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    14. [14]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    15. [15]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    16. [16]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    17. [17]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    18. [18]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(20)
  • Abstract views(1163)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return