Citation: ZHAO Jian,  ZHANG Lin-Nan,  LEI Yong-Qian,  PAN Jia-Chuan,  GUO Peng-Ran. Determination of Trace Total Mercury in Water by Headspace Solid Phase Microextraction and Electropyrolytic Zeeman Atomic Absorption Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1393-1401. doi: 10.19756/j.issn.0253-3820.211133 shu

Determination of Trace Total Mercury in Water by Headspace Solid Phase Microextraction and Electropyrolytic Zeeman Atomic Absorption Spectrometry

  • Corresponding author: GUO Peng-Ran, prguo@fenxi.com.cn
  • Received Date: 20 February 2021
    Revised Date: 27 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21777150), the Guangdong Provincial Key Research Development Programme (No.2020B1111350002) and the Scientific and Technological Project of Guangzhou (No.201803030042).

  • A new and portable method for extraction, enrichment and detection of trace total mercury in water by a headspace solid phase microextraction probe loaded with gold and wood stickswas developed. The surface morphology and elemental composition of the gold-loaded probe were characterized by scanning electron microscopy and energy dispersive analysis (SEM-EDS). The effects of solution pH, salinity, dissolved organic matter (DOM) concentration and co-existing metal ions on SnCl2 reduction of different forms of mercury (inorganic mercury, methyl mercury and ethyl mercury) were investigated. The results showed that the pH, salinity and DOM concentration of the solution had only weak effect on the reduction of different forms of mercury by SnCl2. Except for Cu2+, low concentration of metal ions (≤1 mg/L) had little effect on reduction of different forms of mercuryby SnCl2. High concentrations (100 mg/L) of Fe3+, Zn2+, Ni2+, As3+, Cr3+, Cu2+, V5+ and Pb2+ inhibited the reduction of organic mercury to different degrees by SnCl2, especially V5+ and Pb2+. The relative standard deviations (RSD, n=10) for reduction of inorganic mercury, MeHg and EtHg in solution by SnCl2 were 3.0 %, 3.7 % and 3.5 %, respectively, indicating that the stability of three forms of mercury in SnCl2 solution was good. The detection limit (LOD) of the method for total mercury in water was 0.03 μg/L, the RSD was less than 6.1% (n=6) and the standard recoveries was between 82.0% and 90.0%. This method was simple, less time-consuming and stable and could be applied to the detection of trace total mercury in surface water and tap water.
  • 加载中
    1. [1]

      PEREZ P A, HINTELMANN H, LOBOS G, BRAVO M A. Chemosphere, 2019, 237: 124535.

    2. [2]

      YANG J Y, JIA X D, WANG X Y, CHEN M L, YANG T, WANG J H. Analyst, 2020, 145(15): 5200-5205.

    3. [3]

      RICE K M, WALKER E M, WU M Z, GILLETTE C, BLOUGH E R. J. Prev. Med. Public Health., 2014, 47(2): 74-83.

    4. [4]

    5. [5]

      RUMAYOR M, GALLEGO J R, RODRIGUEZ-VALDES E, DIAZ-SOMOANO M. J. Hazard. Mater., 2017, 325: 1-7.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      LEI Y Q, ZHANG F, GUAN P, GUO P R, WANG G H. New J. Chem., 2020, 44(33): 14299-14305.

    10. [10]

    11. [11]

      SOUZA J P, CERVEIRA C, MICELI T M, MORAES D P, MESKO M F, PEREIRA J S F. Food Chem., 2020, 321: 126715.

    12. [12]

      ZHENG H, HONG J J, LUO X L, LI S, WANG M X, YANG B Y, WANG M. Microchem. J., 2019, 145: 806-812.

    13. [13]

      HE Z, LIN Y, WANG Y, HE B, HOU X D, ZHENG C B. Anal. Chem., 2020, 92(14): 9583-9590.

    14. [14]

      ANNALY CRUZ SOTOLONGO, MESSINA M M, IBANEZ F J, WUILLOUD R G. Talanta, 2020, 210: 120614.

    15. [15]

      JIA X Y, GONG D R, ZHAO J Y, REN H Y, WANG J N, ZHANG X. Microchim. Acta, 2018, 185(4): 228.

    16. [16]

      ZHANG D Y, YANG S W, MA Q F, SUN J N, CHENG H Y, WANG Y C, LIU J H. Food Chem., 2020, 313: 126119.

    17. [17]

      MA S S, HE M, CHEN B B, DENG W C, ZHENG Q, HU B. Talanta, 2016, 146: 93-99.

    18. [18]

      XU Y W, LI Z H, ZHANG W, SHI J Y, ZOU X B, HUANG X W, HU X T, WANG X. Anal. Lett., 2019, 52(18): 2938-2950.

    19. [19]

      JEROMIYAS N, ELAIYAPPILLAI E, KUMARA S, HUANGS T, MANI V. J. Taiwan Inst. Chem. Eng., 2019, 95: 466-474.

    20. [20]

      RATNER N, MANDLE D. Anal. Chem., 2015, 87(10): 5148-5155.

    21. [21]

    22. [22]

      KOKILAVANI S, SYED A, RAJUL L, MARRAIKI N, AL-RASHED S, ELGORBANA M, THOMASA M, KHANS S. Spectrochim. Acta, Part A, 2020, 242: 118738.

    23. [23]

      LIMJ W, KIMT Y, CHOIS W, WOOM A. Food Chem., 2019, 300: 125177.

    24. [24]

      SUVARAPU L N, BAEK S O. Int. J. Anal. Chem., 2017, 2017: 3624015.

    25. [25]

      LU X, ZHAO J T, LIANG X J, ZHANG L J, LIU Y R, YIN X P, Li X K, GU B H. Environ.Sci. Technol. Lett., 2019, 6(3): 165-170.

    26. [26]

      JIA X Y, ZHAO J Y, REN H Y, WANG J N, HONG Z X, ZHANG X. Talanta, 2019, 196: 592-599.

    27. [27]

      AMDE M, YIN Y G, ZHANG D, LIU J F. Chem. Speciation Bioavailability, 2016, 28(1-4): 51-65.

    28. [28]

      BELARDI R P, PAWLISZYN J. Water Qual. Res. J. Can., 1989, 24(1): 179-191.

    29. [29]

      KIM U J, KARTHIKRAJ R. J. Sep. Sci., 2020, 44(1): 1-64.

    30. [30]

      XIE X T, WANG J H, ZHENG J, HUANG J L, NI C Y, CHENG J, HAO Z P, OUYANG G F. Anal. Chim. Acta, 2018, 1029: 30-36.

    31. [31]

      DIEZ S, BAYONA J M. Talanta, 2008, 77(1): 21-27.

    32. [32]

      THONGSAW A, SANANMUANG R, UDNAN Y, ROSS G M, CHAIYASITH W C. Spectrochim. Acta, Part B, 2019, 160: 105685.

    33. [33]

      LI J X, HE Q Q, WU L J, SUN J, ZHENG F, LI L, LIU W Y, LIU J. Microchem. J., 2020, 153: 104459.

    34. [34]

      XU M W, JIN Z, YANG Z Y, RAO J J, CHEN B C. Food. Chem., 2020, 307: 125542.

    35. [35]

      ABUJABER F, JIMENEZ-MORENO M, BERNARDO F J G, MARTIN-DOIMEADIOS R C.Microchim. Acta, 2019, 186(7): 400.

    36. [36]

      LI D, LI Y B, WANG X L. J. Environ. Sci., 2018, 68: 177-184.

    37. [37]

    38. [38]

      SONG X X, YE M D, TANG X J, WANG C J. J. Sep. Sci., 2013, 36(2): 414-420.

    39. [39]

    40. [40]

      MANIKANDAN R, DEEPA P N, NARAYANAN S S. Ionics, 2019, 25(3): 1387-1394.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    16. [16]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    17. [17]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

Metrics
  • PDF Downloads(19)
  • Abstract views(859)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return