Citation: DING Lu-Rong,  FU Wen-Xuan,  DING Hao,  ZHOU Ping,  GUO Wei-Liang,  SU Bin. Electrochemiluminescence Microscopy: From Mechanism Deciphering to Biosensing[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1188-1197. doi: 10.19756/j.issn.0253-3820.211123 shu

Electrochemiluminescence Microscopy: From Mechanism Deciphering to Biosensing

  • Corresponding author: GUO Wei-Liang,  SU Bin, 
  • Received Date: 16 February 2021
    Revised Date: 18 March 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21904115, 22074131, 21874117), the Natural Science Foundation of Zhejiang Province, China (No. LZ18B050001) and the China Postdoctoral Science Foundation (Nos. 2020T130577, 2019M662019).

  • Electrochemiluminescence (ECL) is a luminous phenomenon in which the excited state luminophore is generated by dark electrochemical reactions in solutions. Due to its near-zero background, high sensitivity, good spatiotemporal controllability, fast detection and wide dynamic range, ECL has manifested itself to be one of the most successful techniques in in vitro diagnosis and clinical detection. In addition, ECL imaging possesses the unique advantages such as high-throughput and visualization. As a powerful surface analysis technology, ECL imaging has been successfully employed in material surface/ interface analysis and bioanalysis. Given that the ECL intensity is highly dependent on the properties of electrode surface, ECL imaging can be used to investigate electron-transfer properties and the distribution of electrochemical activity of chemically-modified electrode. In the first part of this review, we briefly introduce the background of ECL technology and describe the generation mechanisms of ECL systems. Then we focus on the recent research progress of imaging analysis based on ECL microscopy, including mechanism rationalization, latent fingerprint visualization and single cell analysis. Finally, some perspectives and future directions of ECL are presented.
  • 加载中
    1. [1]

      RICHTER M M. Chem. Rev., 2004, 104(6): 3003-3036.

    2. [2]

      HESARI M, DING Z F. J. Electrochem. Soc., 2015, 163(4): H3116-H3131.

    3. [3]

      DUFFORD R T, NIGHTINGALE D, GADDUM L W. J. Am. Chem. Soc., 1927, 49(8): 1858-1864.

    4. [4]

      HARVEY N. J. Phys. Chem., 1929, 33(10): 1456-1459.

    5. [5]

      HERCULES D M. Science, 1964, 145(363): 808-809.

    6. [6]

      SANTHANAM K S V, BARD A J. J. Am. Chem. Soc., 1965, 87(1): 139-140.

    7. [7]

      VISCO R E, CHANDROSS E A. J. Am. Chem. Soc., 1964, 86(23): 5350-5351.

    8. [8]

      TOKEL N E, BARD A J. J. Am. Chem. Soc., 1972, 94(8): 2862-2863.

    9. [9]

      DING Z F, QUINN B M, HARAM S K, PELL L E, KORGEL B A, BARD A J. Science, 2002, 296(5571): 1293-1297.

    10. [10]

      CAO Z Y, SHU Y F, QIN H Y, SU B, PENG X G. ACS Cent. Sci., 2020, 6(7): 1129-1137.

    11. [11]

      GUO W L, LIU Y H, CAO Z Y, SU B. J. Anal. Test., 2017, 1(2): 1-17.

    12. [12]

      NOFFSINGER J B,DANIELSON N D. Anal. Chem., 1987, 59(6): 865-868.

    13. [13]

      HE L, COX K A, DANIELSON N D. Anal. Lett., 1990, 23(2): 195-210.

    14. [14]

      LELAND J K, POWELL M J. J. Electrochem. Soc., 1990, 137(10): 3127-3131.

    15. [15]

      ZU Y B, BARD A J. Anal. Chem., 2000, 72(14): 3223-3232.

    16. [16]

      MIAO W J, CHOI J P, BARD A J. J. Am. Chem. Soc., 2002, 124(48): 14478-14485.

    17. [17]

      GROSS E M, PASTORE P, WIGHTMAN R M. J. Phys. Chem. B, 2001, 105(37): 8732-8738.

    18. [18]

      FAN F R F, CLIFFEL D, BARD A J. Anal. Chem., 1998, 70(14): 2941-2948.

    19. [19]

      MAUS R G, WIGHTMAN R M. Anal. Chem., 2001, 73(16): 3993-3998.

    20. [20]

      LEI R, STRATMANN L, SCHAFER D, ERICHSEN T, NEUGEBAUER S, LI N, SCHUHMANN W. Anal. Chem., 2009, 81(12): 5070-5074.

    21. [21]

      LIU Y H, GUO W L, SU B. Chin. Chem. Lett., 2019, 30(9): 1593-1599.

    22. [22]

      DUTTA P, HAN D N, GOUDEAU B, JIANG D C, FANG D J, SOJIC N. Biosens. Bioelectron., 2020, 165: 112372.

    23. [23]

      MA C, WU W W, LI L L, WU S J, ZHANG J R, CHEN Z X, ZHU J J. Chem. Sci., 2018, 9(29): 6167-6175.

    24. [24]

      GUO W L, DING H, GU C Y, LIU Y H, JIANG X C, SU B, SHAO Y H. J. Am. Chem. Soc., 2018, 140(46): 15904-15915.

    25. [25]

      SENTIC M, MILUTINOVIC M, KANOUFI F, MANOJLOVIC D, ARBAULT S, SOJIC N. Chem. Sci., 2014, 5(6): 2568-2572.

    26. [26]

      GUO W L, ZHOU P, SUN L, DING H, SU B. Angew. Chem., Int. Ed., 2021, 60(4): 2089-2093.

    27. [27]

      LEE C H, GAENSSLEN R E. Advances in Fingerprint Technology. CRC press, 2001.

    28. [28]

      XU L R, LI Y, WU S Z, LIU X H, SU B. Angew. Chem., Int. Ed., 2012, 51(32): 8068-8072.

    29. [29]

      TAN J, XU L R, LI T, SU B, WU J M. Angew. Chem., Int. Ed., 2014, 53(37): 9822-9826.

    30. [30]

      XU L R, LI Y, HE Y Y, SU B. Analyst, 2013, 138(8): 2357-2362.

    31. [31]

      LI Y, XU L R, HE Y Y, SU B. Electrochem. Commun., 2013, 33: 92-95.

    32. [32]

    33. [33]

      HU S J, CAO Z Y, ZHOU L, MA R L, SU B. J. Electroanal. Chem., 2020, 870: 114238.

    34. [34]

      XU L R, ZHOU Z Y, ZHANG C Z, HE Y Y, SU B. Chem. Commun., 2014, 50(65): 9097-9100.

    35. [35]

      DOLCI L S, ZANARINI S, CIANA L D, PAOLUCCI F, RODA A. Anal. Chem., 2009, 81(15): 6234-6241.

    36. [36]

      ZHOU J Y, MA G Z, CHEN Y, FANG D J, JIANG D C, CHEN H Y. Anal. Chem., 2015, 87(16): 8138-8143.

    37. [37]

      ZHANG J J, ARBAULT S, SOJIC N, JIANG D C. Annu. Rev. Anal. Chem., 2019, 12(1): 275-295.

    38. [38]

      DING H, GUO W L, SU B. ChemPlusChem, 2020, 85(4): 725-733.

    39. [39]

      LIU G, MA C, JIN B K, CHEN Z X, ZHU J J. Anal. Chem., 2018, 90(7): 4801-4806.

    40. [40]

      ZHANG J J, DING H, ZHAO S Y, JIANG D C, CHEN H Y. Electrochem. Commun., 2019, 98: 38-42.

    41. [41]

      XU J J, HUANG P Y, QIN Y, JIANG D C, CHEN H Y. Anal. Chem., 2016, 88(9): 4609-4612.

    42. [42]

      XU J J, JIANG D P, QIN Y L, XIA J, JIANG D C, CHEN H Y. Anal. Chem., 2017, 89(4): 2216-2220.

    43. [43]

      IWAMA T, INOUE K Y, ABE H, MATSUE T, SHIKU H. Analyst, 2020, 145(21): 6895-6900.

    44. [44]

      CUI C, CHEN Y, JIANG D C, CHEN H Y, ZHANG J R, ZHU J J. Anal. Chem., 2019, 91(1): 1121-1125.

    45. [45]

      HE R Q, TANG H F, JIANG D C, CHEN H Y. Anal. Chem., 2016, 88(4): 2006-2009.

    46. [46]

      WANG Y L, JIN R, SOJIC N, JIANG D C, CHEN H Y. Angew. Chem., Int. Ed., 2020, 59(26): 10416-10420.

    47. [47]

      MA C, WU S J, ZHOU Y, WEI H F, ZHANG J R, CHEN Z X, ZHU J J, LIN Y H, ZHU W L. Angew. Chem., Int. Ed., 2021, 60(9): 4907-4914.

    48. [48]

      VALENTI G, SCARABINO S, GOUDEAU B, LESCH A, JOVIC M, VILLANI E, SENTIC M, RAPINO S, ARBAULT S, PAOLUCCI F, SOJIC N. J. Am. Chem. Soc., 2017, 139(46): 16830-16837.

    49. [49]

      VOCI S, GOUDEAU B, VALENTI G, LESCH A, JOVIC M, RAPINO S, PAOLUCCI F, ARBAULT S, SOJIC N. J. Am. Chem. Soc., 2018, 140(44): 14753-14760.

    50. [50]

      ZANUT A, FIORANI A, REBECCANI S, KESARKAR S, VALENTI G. Anal. Bioanal. Chem., 2019, 411(19):4375-4382.

    51. [51]

      WANG N N, GAO H, LI Y Z, LI G M, CHEN W W, JIN Z C, LEI J P, WEI Q, JU H X. Angew. Chem., Int. Ed., 2021, 60(1): 197-201.

    52. [52]

      WANG X F, GAO H F, QI H L, GAO Q, ZHANG C X. Anal. Chem., 2018, 90(5): 3013-3018.

    53. [53]

      CAO J T, WANG Y L, ZHANG J J, DONG Y X, LIU F R, REN S W, LIU Y M. Anal. Chem., 2018, 90(17): 10334-10339.

    54. [54]

      LIU G, JIN B K, MA C, CHEN Z X, ZHU J J. Anal. Chem., 2019, 91(9): 6363-6370.

    55. [55]

      GAO W X, LIU Y, ZHANG H R, WANG Z H. ACS Sens., 2020, 5(4): 1216-1222.

    56. [56]

      ZHANG H R, GAO W X, LIU Y, SUN Y N, JIANG Y X, ZHANG S S. Anal. Chem., 2019, 91(19): 12581-12586.

    57. [57]

      ZHANG J J, JIN R, JIANG D C, CHEN H Y. J. Am. Chem. Soc., 2019, 141(26): 10294-10299.

    58. [58]

      DING H, GUO W L, SU B. Angew. Chem., Int. Ed., 2020, 59(1): 449-456.

    59. [59]

      GAO H F, HAN W J, QI H L, GAO Q, ZHANG C X. Anal. Chem., 2020, 92(12): 8278-8284.

    60. [60]

      DING H, ZHOU P, FU W X, DING L R, GUO W L, SU B. Angew. Chem., Int. Ed., 2021, 60(21): 11769-11773.

    61. [61]

      GUO W L, DING H, ZHOU P, WANG Y F, SU B. Angew. Chem., Int. Ed., 2020, 59(17): 6745-6749.

    62. [62]

      ZINNA F, VOCI S, ARRICO L, BRUN E, HOMBERG A, BOUFFIER L, FUNAIOLI T, LACOUR J, SOJIC N, BARI L D. Angew. Chem., Int. Ed., 2019, 58(21): 6952-6956.

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    5. [5]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    6. [6]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    7. [7]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(0)
  • Abstract views(960)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return