Citation:
DING Lu-Rong, FU Wen-Xuan, DING Hao, ZHOU Ping, GUO Wei-Liang, SU Bin. Electrochemiluminescence Microscopy: From Mechanism Deciphering to Biosensing[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(7): 1188-1197.
doi:
10.19756/j.issn.0253-3820.211123
-
Electrochemiluminescence (ECL) is a luminous phenomenon in which the excited state luminophore is generated by dark electrochemical reactions in solutions. Due to its near-zero background, high sensitivity, good spatiotemporal controllability, fast detection and wide dynamic range, ECL has manifested itself to be one of the most successful techniques in in vitro diagnosis and clinical detection. In addition, ECL imaging possesses the unique advantages such as high-throughput and visualization. As a powerful surface analysis technology, ECL imaging has been successfully employed in material surface/ interface analysis and bioanalysis. Given that the ECL intensity is highly dependent on the properties of electrode surface, ECL imaging can be used to investigate electron-transfer properties and the distribution of electrochemical activity of chemically-modified electrode. In the first part of this review, we briefly introduce the background of ECL technology and describe the generation mechanisms of ECL systems. Then we focus on the recent research progress of imaging analysis based on ECL microscopy, including mechanism rationalization, latent fingerprint visualization and single cell analysis. Finally, some perspectives and future directions of ECL are presented.
-
-
-
[1]
RICHTER M M. Chem. Rev., 2004, 104(6): 3003-3036.
-
[2]
HESARI M, DING Z F. J. Electrochem. Soc., 2015, 163(4): H3116-H3131.
-
[3]
DUFFORD R T, NIGHTINGALE D, GADDUM L W. J. Am. Chem. Soc., 1927, 49(8): 1858-1864.
-
[4]
HARVEY N. J. Phys. Chem., 1929, 33(10): 1456-1459.
-
[5]
HERCULES D M. Science, 1964, 145(363): 808-809.
-
[6]
SANTHANAM K S V, BARD A J. J. Am. Chem. Soc., 1965, 87(1): 139-140.
-
[7]
VISCO R E, CHANDROSS E A. J. Am. Chem. Soc., 1964, 86(23): 5350-5351.
-
[8]
TOKEL N E, BARD A J. J. Am. Chem. Soc., 1972, 94(8): 2862-2863.
-
[9]
DING Z F, QUINN B M, HARAM S K, PELL L E, KORGEL B A, BARD A J. Science, 2002, 296(5571): 1293-1297.
-
[10]
CAO Z Y, SHU Y F, QIN H Y, SU B, PENG X G. ACS Cent. Sci., 2020, 6(7): 1129-1137.
-
[11]
GUO W L, LIU Y H, CAO Z Y, SU B. J. Anal. Test., 2017, 1(2): 1-17.
-
[12]
NOFFSINGER J B,DANIELSON N D. Anal. Chem., 1987, 59(6): 865-868.
-
[13]
HE L, COX K A, DANIELSON N D. Anal. Lett., 1990, 23(2): 195-210.
-
[14]
LELAND J K, POWELL M J. J. Electrochem. Soc., 1990, 137(10): 3127-3131.
-
[15]
ZU Y B, BARD A J. Anal. Chem., 2000, 72(14): 3223-3232.
-
[16]
MIAO W J, CHOI J P, BARD A J. J. Am. Chem. Soc., 2002, 124(48): 14478-14485.
-
[17]
GROSS E M, PASTORE P, WIGHTMAN R M. J. Phys. Chem. B, 2001, 105(37): 8732-8738.
-
[18]
FAN F R F, CLIFFEL D, BARD A J. Anal. Chem., 1998, 70(14): 2941-2948.
-
[19]
MAUS R G, WIGHTMAN R M. Anal. Chem., 2001, 73(16): 3993-3998.
-
[20]
LEI R, STRATMANN L, SCHAFER D, ERICHSEN T, NEUGEBAUER S, LI N, SCHUHMANN W. Anal. Chem., 2009, 81(12): 5070-5074.
-
[21]
LIU Y H, GUO W L, SU B. Chin. Chem. Lett., 2019, 30(9): 1593-1599.
-
[22]
DUTTA P, HAN D N, GOUDEAU B, JIANG D C, FANG D J, SOJIC N. Biosens. Bioelectron., 2020, 165: 112372.
-
[23]
MA C, WU W W, LI L L, WU S J, ZHANG J R, CHEN Z X, ZHU J J. Chem. Sci., 2018, 9(29): 6167-6175.
-
[24]
GUO W L, DING H, GU C Y, LIU Y H, JIANG X C, SU B, SHAO Y H. J. Am. Chem. Soc., 2018, 140(46): 15904-15915.
-
[25]
SENTIC M, MILUTINOVIC M, KANOUFI F, MANOJLOVIC D, ARBAULT S, SOJIC N. Chem. Sci., 2014, 5(6): 2568-2572.
-
[26]
GUO W L, ZHOU P, SUN L, DING H, SU B. Angew. Chem., Int. Ed., 2021, 60(4): 2089-2093.
-
[27]
LEE C H, GAENSSLEN R E. Advances in Fingerprint Technology. CRC press, 2001.
-
[28]
XU L R, LI Y, WU S Z, LIU X H, SU B. Angew. Chem., Int. Ed., 2012, 51(32): 8068-8072.
-
[29]
TAN J, XU L R, LI T, SU B, WU J M. Angew. Chem., Int. Ed., 2014, 53(37): 9822-9826.
-
[30]
XU L R, LI Y, HE Y Y, SU B. Analyst, 2013, 138(8): 2357-2362.
-
[31]
LI Y, XU L R, HE Y Y, SU B. Electrochem. Commun., 2013, 33: 92-95.
-
[32]
-
[33]
HU S J, CAO Z Y, ZHOU L, MA R L, SU B. J. Electroanal. Chem., 2020, 870: 114238.
-
[34]
XU L R, ZHOU Z Y, ZHANG C Z, HE Y Y, SU B. Chem. Commun., 2014, 50(65): 9097-9100.
-
[35]
DOLCI L S, ZANARINI S, CIANA L D, PAOLUCCI F, RODA A. Anal. Chem., 2009, 81(15): 6234-6241.
-
[36]
ZHOU J Y, MA G Z, CHEN Y, FANG D J, JIANG D C, CHEN H Y. Anal. Chem., 2015, 87(16): 8138-8143.
-
[37]
ZHANG J J, ARBAULT S, SOJIC N, JIANG D C. Annu. Rev. Anal. Chem., 2019, 12(1): 275-295.
-
[38]
DING H, GUO W L, SU B. ChemPlusChem, 2020, 85(4): 725-733.
-
[39]
LIU G, MA C, JIN B K, CHEN Z X, ZHU J J. Anal. Chem., 2018, 90(7): 4801-4806.
-
[40]
ZHANG J J, DING H, ZHAO S Y, JIANG D C, CHEN H Y. Electrochem. Commun., 2019, 98: 38-42.
-
[41]
XU J J, HUANG P Y, QIN Y, JIANG D C, CHEN H Y. Anal. Chem., 2016, 88(9): 4609-4612.
-
[42]
XU J J, JIANG D P, QIN Y L, XIA J, JIANG D C, CHEN H Y. Anal. Chem., 2017, 89(4): 2216-2220.
-
[43]
IWAMA T, INOUE K Y, ABE H, MATSUE T, SHIKU H. Analyst, 2020, 145(21): 6895-6900.
-
[44]
CUI C, CHEN Y, JIANG D C, CHEN H Y, ZHANG J R, ZHU J J. Anal. Chem., 2019, 91(1): 1121-1125.
-
[45]
HE R Q, TANG H F, JIANG D C, CHEN H Y. Anal. Chem., 2016, 88(4): 2006-2009.
-
[46]
WANG Y L, JIN R, SOJIC N, JIANG D C, CHEN H Y. Angew. Chem., Int. Ed., 2020, 59(26): 10416-10420.
-
[47]
MA C, WU S J, ZHOU Y, WEI H F, ZHANG J R, CHEN Z X, ZHU J J, LIN Y H, ZHU W L. Angew. Chem., Int. Ed., 2021, 60(9): 4907-4914.
-
[48]
VALENTI G, SCARABINO S, GOUDEAU B, LESCH A, JOVIC M, VILLANI E, SENTIC M, RAPINO S, ARBAULT S, PAOLUCCI F, SOJIC N. J. Am. Chem. Soc., 2017, 139(46): 16830-16837.
-
[49]
VOCI S, GOUDEAU B, VALENTI G, LESCH A, JOVIC M, RAPINO S, PAOLUCCI F, ARBAULT S, SOJIC N. J. Am. Chem. Soc., 2018, 140(44): 14753-14760.
-
[50]
ZANUT A, FIORANI A, REBECCANI S, KESARKAR S, VALENTI G. Anal. Bioanal. Chem., 2019, 411(19):4375-4382.
-
[51]
WANG N N, GAO H, LI Y Z, LI G M, CHEN W W, JIN Z C, LEI J P, WEI Q, JU H X. Angew. Chem., Int. Ed., 2021, 60(1): 197-201.
-
[52]
WANG X F, GAO H F, QI H L, GAO Q, ZHANG C X. Anal. Chem., 2018, 90(5): 3013-3018.
-
[53]
CAO J T, WANG Y L, ZHANG J J, DONG Y X, LIU F R, REN S W, LIU Y M. Anal. Chem., 2018, 90(17): 10334-10339.
-
[54]
LIU G, JIN B K, MA C, CHEN Z X, ZHU J J. Anal. Chem., 2019, 91(9): 6363-6370.
-
[55]
GAO W X, LIU Y, ZHANG H R, WANG Z H. ACS Sens., 2020, 5(4): 1216-1222.
-
[56]
ZHANG H R, GAO W X, LIU Y, SUN Y N, JIANG Y X, ZHANG S S. Anal. Chem., 2019, 91(19): 12581-12586.
-
[57]
ZHANG J J, JIN R, JIANG D C, CHEN H Y. J. Am. Chem. Soc., 2019, 141(26): 10294-10299.
-
[58]
DING H, GUO W L, SU B. Angew. Chem., Int. Ed., 2020, 59(1): 449-456.
-
[59]
GAO H F, HAN W J, QI H L, GAO Q, ZHANG C X. Anal. Chem., 2020, 92(12): 8278-8284.
-
[60]
DING H, ZHOU P, FU W X, DING L R, GUO W L, SU B. Angew. Chem., Int. Ed., 2021, 60(21): 11769-11773.
-
[61]
GUO W L, DING H, ZHOU P, WANG Y F, SU B. Angew. Chem., Int. Ed., 2020, 59(17): 6745-6749.
-
[62]
ZINNA F, VOCI S, ARRICO L, BRUN E, HOMBERG A, BOUFFIER L, FUNAIOLI T, LACOUR J, SOJIC N, BARI L D. Angew. Chem., Int. Ed., 2019, 58(21): 6952-6956.
-
[1]
-
-
-
[1]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[2]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[3]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[4]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[5]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[6]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[7]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[8]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[9]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[10]
Lijun Yang . Thoughts and Practices on Enhancing Students’ Comprehension through Visualized Instruction of Structural Chemistry. University Chemistry, 2025, 40(10): 295-302. doi: 10.12461/PKU.DXHX202411048
-
[11]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[12]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[13]
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
-
[14]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[15]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[16]
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
-
[17]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[18]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[19]
Pengli GUAN , Renhu BAI , Xiuling SUN , Bin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058
-
[20]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1170)
- HTML views(253)