Citation: LIANG Long-Hui,  CHENG Xi,  YANG Yang,  YAN Long,  YU Hui-Lan,  DU-Bin,  LIU Chang-Cai,  LIU Shi-Lei. An in Vitro Detection Method for Depurination Activity of Ricin Based on A Novel RNA Substrate and Its Application[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1694-1703. doi: 10.19756/j.issn.0253-3820.211117 shu

An in Vitro Detection Method for Depurination Activity of Ricin Based on A Novel RNA Substrate and Its Application

  • Corresponding author: LIU Chang-Cai,  LIU Shi-Lei, 
  • Received Date: 11 February 2021
    Revised Date: 9 July 2021

    Fund Project: Supported by the State Key Laboratory of NBC Protection for Civilian (No.SKLNBC2020-08).

  • An in vitro detection method for active ricin based on depurination of a novel RNA substrate was developed with no adenine interference in the negative control sample. The problem that the substrate was prone to self-hydrolysis and caused false positive results in the traditional depurination activity detection method was solved. The depurination activities of single-stranded DNA and RNA substrates with the same sequence were systematically compared. It was found that RNA was more suitable as the substrate for detection of ricin depurination activity. The optimization of reaction conditions showed that the pH values, temperature, and concentration of RNA substrate were the key factors for detection of ricin depurination activity. Under the optimal conditions, there was no adenine interference in the negative control sample. The influence of RNA stem-loop composition on substrate activity was validated by screening a series of RNA substrates. A novel RNA substrate was obtained with the optimal depurination activity, and its depurination activity was twice that of the reported substrate. By combining with the immunocapture purification, a quantitative detection method for the active ricin by isotope-labeled internal liquid chromatography-triple quadrupole mass spectrometry with multiple reaction monitoring using the novel RNA as the depurination substrate was established. This method had good specificity, the linear range of active ricin ranged from 5.0 to 300 ng/mL, and the limit of detection was 1.0 ng/mL (S/N=3). This method was applied to the quantitative detection of active ricin in tap water, milk, and plasma samples. The recoveries of spiked samples were between 91.0% and 116.5%, and the relative standard deviations (RSDs) were between 3.2% and 9.3%. This method was helpful for the screening and identification of active ricin in the fields of food safety and chemical weapons inspection.
  • 加载中
    1. [1]

      AUDI J, BELSON M, PATEL M, SCHIER J, OSTERLOH J. JAMA. J. Am. Med. Assoc., 2005, 294(18):2342-2351.

    2. [2]

      ROY C J, MARTHA H, HARTINGS J M, LOUISE P, STEVEN D. Inhalation Toxicol., 2008, 15(6):619-638.

    3. [3]

      FODSTAD O, OLSNES S, PIHL A. Br. J. Cancer, 1976, 34(4):418-425.

    4. [4]

      STIRPE F, BATTELI M G. Cell. Mol. Life Sci., 2006, 63(16):1850-1866.

    5. [5]

      LIN J Y, KAO W Y, TSERNG K Y, CHEN C C, TUNG T C. Cancer Res., 1970, 30(9):2431-2433.

    6. [6]

      OLSNES S. Toxicon, 2004, 44(4):361-370.

    7. [7]

      FABBRINI M S, KATAYAMA M, NAKASE I, VAGO R. Toxins, 2017, 9(10):314-347.

    8. [8]

      RAMAKRISHNAN S, EAGLE M.R, HOUSTON L L. Biochim. Biophys. Acta, 1982, 719(2):341-348.

    9. [9]

      SHYU H F, CHIAO D J, LIU H W, TANG S S. Hybridoma Hybridomics., 2002, 21(1):69-73.

    10. [10]

      SIMON S, WORBS S, AVONDET M A, TRACZ D M, DANO J, SCHMIDT L, VOLLAND H, DORNER B G, CORBETT C R. Toxins, 2015, 7(12):4967-4986.

    11. [11]

      LIGLER F S, CHRIS ROWE T, SHRIVER-LAKE L C, SAPSFORD K E, YURA S, GOLDEN J P. Anal. Bioanal. Chem., 2003, 377(3):469-477.

    12. [12]

    13. [13]

      DARBY S M, MILLER M L, ALLEN R O. J. Forensic Sci., 2001, 46(5):1033-1042.

    14. [14]

    15. [15]

      OSTIN A, BERGSTROM T, FREDRIKSSOM S A, NILSSON C. Anal. Chem., 2007, 79(16):6271-6278.

    16. [16]

      MCGRATH S C, SCHIELTZ D M, MCWILLIAMS L G, PIRKLE J L, BARR J R. Anal. Chem., 2011, 83(8):2897-2905.

    17. [17]

      LIANG L H, CHENG X, YU H L, YANG Y, MU X H, CHEN B, LI X S, WU J N, YAN L, LIU C C, LIU S L. Anal. Bioanal. Chem., 2021, 413(2):585-597.

    18. [18]

      KALB S R, SCHIELTZ D M, BECHERR F, ASTOT C, FREDRIKSSON S A, BARR J R. Toxins, 2015, 7(12):4881-4894.

    19. [19]

      SCHIELTZ D M, MCWILLIAMS L G, KUKLENYIK Z, PREZIOSO S M, CARTER A J, WILLIAMSON Y M, MCGRATH S C, MORSE S A, BARR J R. Toxicon, 2015, 95(3):72-83.

    20. [20]

      BECHER F, DURIEZ E, VOLLAND H, TABET J C, EZAN E. Anal. Chem., 2007, 79(2):659-665.

    21. [21]

      KALB S R, BARR J R. Anal. Chem., 2009, 81(16):2037-2042.

    22. [22]

      SCHIELTZ D M, MCGRATH S C, MCWILLIAMS L G, REES J, BOWEN M D, KOOLS J J, DAUPHIN L A, SALADIN E G, NEWTON B N, STANG J L, VICK M J, THOMAS J, PIRKLE J L, BARR J R. Forensic Sci. Int., 2011, 209(1-3):70-79.

    23. [23]

      ANTOINE M D, HAGAN N A, LIN J S, FELDMAN A B, DEMIREV P A. Int. J. Mass Spectrom., 2012, 312(SI):41-44.

    24. [24]

      OPCW Technical Secretariat. GUIDELINES FOR THE FOURTH BIOTOXIN SAMPLE ANALYSIS EXERCISE. 2019-12. https://www.opcw.org/resources/documents/technical-secretariat/2019.

    25. [25]

    26. [26]

      WANG D X, BAUDYS J, BARR J R, KALB S R. Anal. Chem., 2016, 88(13):6867-6872.

    27. [27]

      TANG J, SUN J, LUI R, ZHANG Z, LIU J, XIE J. ACS Appl. Mater. Interfaces, 2016, 8(3):2449-2455.

    28. [28]

      SUN J, ZHANG X, LI T, XIE J, SHAO B, XUE D, TANG X, LI H, LIU Y. Anal. Chem., 2019, 91(10):6454-6461.

  • 加载中
    1. [1]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    4. [4]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    5. [5]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    6. [6]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    9. [9]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    10. [10]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    11. [11]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    12. [12]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    15. [15]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    16. [16]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    17. [17]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    20. [20]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

Metrics
  • PDF Downloads(13)
  • Abstract views(712)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return