Citation: QU Min-Min,  CHEN Jia,  XU Bin,  ZHANG Ya-Jiao,  XU Hua,  XIE Jian-Wei. A Toxic Effect-Directed Screening Method for Genotoxic Impurities in Drugs Based on Mass Spectrometry Quantitative Analysis of Phosphorylated Histone H2AX[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1531-1539. doi: 10.19756/j.issn.0253-3820.211096 shu

A Toxic Effect-Directed Screening Method for Genotoxic Impurities in Drugs Based on Mass Spectrometry Quantitative Analysis of Phosphorylated Histone H2AX

  • Corresponding author: XU Hua, huarxu@163.com
  • Received Date: 31 January 2021
    Revised Date: 6 April 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2018YFC1602600) and the National Natural Science Foundation of China(No.21974151).

  • Inspired by the fact that phosphorylated histone H2AX (γ-H2AX) has emerged as a useful biomarker for break of double-strand DNA. In this study, an isotope dilution-based liquid chromatography-tandem mass spectrometry screening method for genotoxic impurities (GTI) was established. The detection limits for H2AX and γ-H2AX target peptides were 1 ng/mL and 2 ng/mL, respectively. The accuracy and precision could meet the methodological requirement for biological samples analysis. This study focused on two kinds of important genotoxic impurities, ethylmethylsulfone (EMS) and N-nitrosodimethylamine (NDMA), in two human cell lines (HepG2 and HeLa) with different metabolic capabilities. The results showed that EMS had genotoxic characteristics in the two cell lines, while NDMA had genotoxicity only in HepG2 cells. The sensitivities of the method were 0.06 μg/g for EMS and 0.03 μg/g for NDMA, which satisfied the international detection limit standard (EMS:0.6 μg/g, NDMA:0.3 μg/g). The method was further applied to the screening of GTI in five commercially available tablets. The tablets were dissolved in water, followed by incubating with the cells to detect γ-H2AX level. The results showed that other unconcerned ingredients in these drugs did not interfere with the detection. This method was convenient, accurate and sensitive, and could be used for rapid detection of GTI in drugs.
  • 加载中
    1. [1]

      LIU D Q, SUN M J, KORD A S. J. Pharm. Biomed., 2010, 51(5):999-1014.

    2. [2]

      REDDY A V B, JAAFAR J, UMAR K, MAJID Z A, ARISA B, TALIB J. J. Sep. Sci., 2015, 38(5):764-779.

    3. [3]

      BENIGNI R, BOSSA C. Curr. Comput. Aid. Drug, 2006, 2(2):169-176.

    4. [4]

      EMEA. European Medicines Agency announces recall of Viracept.[EB/OL].

    5. [5]

      EMEA. EMA reviewing medicines containing valsartan from Zhejiang Huahai following detection of an impurity. EMA/459276/2018.

    6. [6]

      ICH M7(R1). Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. 2017.[EB/OL]. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_R1_Addendum_Step_4_2017_0331.pdf.

    7. [7]

      EMEA. Guideline on the Limit of Genotoxic Impurities[EB/OL]. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002903.pdf.

    8. [8]

      FDA Guidance for Industry Specific Aspects of Regulatory GenotoxicityTests for Pharmaceuticals.[EB/OL]. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm074925.pdf.

    9. [9]

      National Medical Products Administration. Technical Guidelines for Research on Nitrosamine Impurities in Chemical Drugs (for Trial Implementation). 2020.[2020-05-17]. http://www.nmpa.gov.cn/WS04/CL2138/377043.html.

    10. [10]

      KAKADIYA P R, CHANDRASHEKHAR T G, GANGULY S, SINGH D K, SINGH V. J. Pharmaceut. Biomed., 2011, 6(2):21-28.

    11. [11]

    12. [12]

    13. [13]

      ZHOU J, XU J, ZHENG X, LIU W, ZHENG F. J. Sep. Sci., 2017, 40(17):3414-3421.

    14. [14]

      ELDER D P, SNODIN D J. J. Pharm. Pharmacol., 2009, 61(3):269-278.

    15. [15]

    16. [16]

      KOPP B, KHOURY L, AUDEBERT M. Arch. Toxicol., 2019, 98(8):2103-2114.

    17. [17]

      LEE Y, WANG Q, SHURYAK I, BRENNER DJ, TURNER H C. Radiat. Oncol., 2019, 14(150):1-10.

    18. [18]

    19. [19]

      SNODIN D J, MCCROSSEN S D. Regul. Toxicol. Pharmacol., 2013, 67(2):299-316.

    20. [20]

      SMART D J, AHMEDI KP, HARVEY J S, LYNCH A M. Mutat. Res., 2011, 715(1-2):25-31.

    21. [21]

      GEORGE J, TSUCHISHIMA M, TSUTSUMI M. Cell Death Dis., 2019, 10(1):1801-1809.

    22. [22]

      PIOTROWSKA H, KUCINSKA M, MURIAS M. Mol. Cell. Biochem., 2013, 383(1-2):95-102.

    23. [23]

    24. [24]

    25. [25]

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    5. [5]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    6. [6]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    7. [7]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    8. [8]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    9. [9]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    14. [14]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    15. [15]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    19. [19]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    20. [20]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

Metrics
  • PDF Downloads(9)
  • Abstract views(1072)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return