Citation: ZHU Hui,  XIA Yun-Sheng. Fabrication, Properties and Bio-imaging Application of Supraparticles[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1089-1105. doi: 10.19756/j.issn.0253-3820.211094 shu

Fabrication, Properties and Bio-imaging Application of Supraparticles

  • Corresponding author: XIA Yun-Sheng, xiayuns@mail.ahnu.edu.cn
  • Received Date: 31 January 2021
    Revised Date: 24 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21775004).

  • Supraparticles (SPs) are the nano-agglomerates with a certain shape and hierarchical structure, which are self-assembled by same or different kinds of individual inorganic nanocrystals. SPs not only exhibit collective properties and/or synergistic effects, but their diverse shapes and devisable spatial structures provide multi-scale and multi-dimensional possibilities for the interactions with various biological systems. Thus, SPs show a variety of application potentials in bio-sensing, bio-imaging, diagnosis and even therapy, etc. In this review, the progress of SPs fabrication, properties, and their applications in bioimaging field in recent years are summarized, and the main problems and future development of their fabrication and applications in bio-medicine are discussed.
  • 加载中
    1. [1]

      CROZALS G D, BONNET R, FARRE C, CHAIX C. Nano Today, 2016, 11(4): 435-463.

    2. [2]

      MCNAMARA K, TOFAIL S A M. Adv. Phys. X, 2017, 2(1): 54-88.

    3. [3]

      KIM M, LEE J H, NAM J. M. Adv. Sci., 2019, 6(17): 1900471.

    4. [4]

      LI F, LU J, KONG X, HYEON T, LING D. Adv. Mater., 2017, 29(14): 1605897.

    5. [5]

      LAWLESS D. KAPOOR S, MEISEL D. J. Phys. Chem., 1995, 99(25): 10329-10335.

    6. [6]

      VELEV O D. Science, 2000, 287(5461): 2240-2243.

    7. [7]

      VELEV O D, FURUSAWA K, NAGAYAMA K. Langmuir, 1996, 1291(10): 2385-2391.

    8. [8]

      DIAMOND S. Clays Clay Miner., 1971, 19(4): 239-249.

    9. [9]

      BACHELLERIE J P, NICOLOSO M, ZALTA J P. Eur. J. Biochem., 1977, 79(1): 23-32.

    10. [10]

      XIA Y, TANG Z. Chem, Commun., 2012, 48(51): 6320-6336

    11. [11]

      PICCININI E, PALLAROLA D, BATTAGLINIC F, AZZARONI O. Mol. Syst. Des. Eng., 2016, 1(2): 155-162.

    12. [12]

      XUE Z, WANG P, PENG A, WANG T. Adv. Mater., 2019, 31(38): 1801441.

    13. [13]

      WINTZHEIMER S, GRANATH T, OPPMANN M, KISTER T, THAI T, KRAUS T, VOGEL N, MANDEL K. ACS Nano, 2018, 12(6): 5093-5120.

    14. [14]

      MA W, XU L, WANG L, KUANG H, XU C. Biosens, Bioelectron., 2016, 79(15): 220-236.

    15. [15]

      YAN C, WANG T. Chem. Soc. Rev., 2017, 46(5): 1483-1509.

    16. [16]

      WU X, HAO C, KUMAR J, KUANG H, KOTOV N A, LIZ-MARZÁN L M, XU C. Chem. Soc. Rev., 2018, 47(13): 4677-4696.

    17. [17]

      WU Z, YAO Q, ZANG S, XIE J. ACS Mater. Lett., 2019, 1(2): 237-248.

    18. [18]

      HOU K, HAN J, TANG Z. ACS Mater. Lett., 2020, 2(1): 95-106.

    19. [19]

      DENG K, LUO Z, TAN L, QUAN Z. Chem. Soc. Rev., 2020, 49(16): 6002-6038.

    20. [20]

      BOLES M A, ENGE M, TALAPIN D V. Chem. Rev., 2016, 116(18): 11220-11289.

    21. [21]

      MARINO E, KODGER T E, WEGDAM G H, SCHALL P. Adv. Mater., 2018, 30(43): 1803433.

    22. [22]

      YAO L, WANG B, YANG Y, CHEN X, HU J, YANG D, DONG A. Chem. Commun., 2019, 55(9): 1229.

    23. [23]

      VANMAEKELBERGH D. ACS Nano, 2018, 12(12): 12788-12794.

    24. [24]

      PARK S, HWANG H, KIM M, MOON J H, KIM S H. Nanoscale, 2020, 12(36): 18576-18594.

    25. [25]

      OPPMANN M, MILLER F, THUERAUF S, GROPPE P, PRIESCHL J, STAUCH C. MANDEL K. ACS Appl. Mater. Interfaces, 2018, 10(16): 14183-14192.

    26. [26]

      CANZIANI H, CHIERA S, SCHUFFENHAUER T, KOPP S P, METZGER F, BÜCK A, SCHMIDT M, VOGEL N. Small, 2020, 16(30): 2002076.

    27. [27]

      WINTZHEIMER S, OPPMANN M, DOLD M, PANNEK C, BAUERSFELD M L, HENFLING M, TRUPP S, SCHUG B, MANDEL K. Part. Part. Syst. Charact., 2019, 36(10): 1900254.

    28. [28]

      BAI F, WANG D, HUO Z, CHEN W, LIU L, LIANG X, CHEN C, WANG X, PENG Q, LI Y. Angew. Chem., Int. Ed., 2007, 119(35): 6770-6773.

    29. [29]

      SHI R, CAO Y, BAO Y, ZHAO Y, WATERHOUSE G I N, FANG Z, WU L Z, TUNG C H, YIN Y, ZHANG T. Adv. Mater., 2017, 29(27): 1700803.

    30. [30]

      LUO D, QIN X, SONG Q, QIAO X, ZHANG Z, XUE Z, LIU C, MO G, WANG T. Adv. Funct. Mater., 2017, 27(44): 1701982.

    31. [31]

      KISTER T, MRAVLAK M, SCHILLING T, KRAUS T. Nanoscale, 2016, 8(27): 13377-13384.

    32. [32]

      YANG Y, WANG B, SHEN X, YAO L, WANG L, CHEN X, XIE S, LI T, HU J, YANG D, DONG A. J. Am. Chem. Soc., 2018, 140(44): 15038-15047.

    33. [33]

      CHEN Y, NURUMBETOV G, CHEN R, BALLARD N, BON S A F. Langmuir, 2013, 29(41): 12657-12662.

    34. [34]

      KIM J H, JEON T Y, CHOI T M, SHIM T S, KIM S H, YANG S M. Langmuir, 2014, 30(6): 1473-1488.

    35. [35]

      GAO A, LIU J, YE L, SCHÖNECKER C, KAPPL M, BUTT H J, STEFFEN W. Langmuir, 2019, 35(43): 14042-14048.

    36. [36]

      SPERLING M, GRADZIELSKI M. Gels, 2017, 3(2): 15.

    37. [37]

      WOOH S, HUESMANN H, TAHIR M N, PAVEN M, WICHMANN K, VOLLMER D, TREMEL W, PAPADOPOULOS P, BUTT H J. Adv. Mater., 2015, 27(45): 7338-7343.

    38. [38]

      LIU W, KAPPL M, BUTT H J. ACS Nano, 2019, 13(12): 13949-13956.

    39. [39]

      LIU W, MIDYA J, KAPPL M, BUTT H J, NIKOUBASHMAN A. ACS Nano, 2019, 13(5): 4972-4979.

    40. [40]

      MAAS M, SILVÉRIO C C, LAUBE J, REZWAN K. J. Colloid Interface Sci., 2017, 501(1): 256-266.

    41. [41]

      YU Y, YANG X, LIU M, NISHIKAWA M, TEI T, MIYAKO E. ACS Appl. Mater. Interfaces, 2019, 11(21): 18978-18987.

    42. [42]

      LI N, ZHANG M, ZHA Y, CAO Y, MA Y. J. Colloid Interface Sci., 2020, 575(1): 54-60.

    43. [43]

      HUANG J, XIAO Y, PENG Z, XU Y, LI L, TAN L, YUAN K, CHEN Y. Adv. Sci., 2019, 6(12): 1900107.

    44. [44]

      MA Z, GAO G, LUO Z, TANG X, SUN T. J. Phys. Chem. C, 2019, 123(40): 24973-24978.

    45. [45]

      WANG Y, ZEIRI O, RAULA M, OUAY B L, STELLACCI F, WEINSTOCK I A. Nat. Nanotechnol., 2016, 12(2): 170-176.

    46. [46]

      NAKANISHI H, DEÁK A, HÓLLÓ G, LAGZI I. Angew. Chem., Int. Ed., 2018, 57(49): 16062–16066.

    47. [47]

      AI Y, LIU L, ZHANG C, QI L, HE M, LIANG Z, SUN H, LUO G, LIANG Q. ACS Appl. Mater. Interfaces, 2018, 10(38): 32180-32191.

    48. [48]

      MARTÍNEZ-ESAÍN J, FARAUDO J, PUIG T, OBRADORS X, ROS J, RICART S, YÁÑEZ R. J. Am. Chem. Soc., 2018, 140(6): 2127-2134.

    49. [49]

      LING J, GONG S, XIA Y. Adv. Mater. Interfaces, 2020, 7(18): 2000804.

    50. [50]

      MA M, ZHU H, LING J, GONG S, ZHANG Y, XIA Y, TANG Z. ACS Nano, 2020, 14(4): 4036-4044.

    51. [51]

      ZHANG W, XIAO J, CAO Q, WANG W, PENG X, GUAN G, CUI Z, ZHANG Y, WANG S, ZOU R, WAN X, QIU H, HU J. Nanoscale, 2018, 10(24): 11430-1140.

    52. [52]

      YEOM J, GUIMARAES P P G, AHN H M, JUNG B K, HU Q, MCHUGH K, MITCHELL M J, YUN C O, LANGER R, JAKLENEC A. Adv. Mater., 2019, 32(1): 1903878.

    53. [53]

      XIA Y, NGUYEN T D, YANG M, LEE B, SANTOS A, PODSIADLO P, TANG Z, GLOTZER S C, KOTOV N A. Nat. Nanotechnol., 2011, 6(9): 580-588.

    54. [54]

      WANG W, HAO C, SUN M, XU L, XU C, KUANG H. Adv. Funct. Mater., 2018, 28(22): 1800310.

    55. [55]

      CHEN Y, FU G, LI Y, GU Q, XU L, SUN D, TANG Y. J. Mater. Chem. A, 2017, 5(8): 3774-3779.

    56. [56]

      ZHUANG J, WU H, YANG Y, CAO Y C. J. Am. Chem. Soc., 2007, 129(46): 14166-14167.

    57. [57]

      SAINI M, VERMA A, TOMAR K, BHARADWAJ P K, SADHU K K. Chem. Commun., 2018, 54(91): 12836-12839.

    58. [58]

      JIANG K Y, WENG Y L, GUO S Y, YU Y, XIAO F X. Nanoscale, 2017, 9(43): 16922-16936.

    59. [59]

      PARK J I, NGUYEN T D, DE QUEIRÓS SILVEIRA G, BAHNG J H, SRIVASTAVA S, ZHAO G, SUN K, ZHANG P, GLOTZER S C, KOTOV N. A. Nat. Commun., 2014, 5: 3593.

    60. [60]

      DE Q, SILVEIRA G, RAMESAR N. S, NGUYEN T D, BAHNG J H, GLOTZER S C, KOTOV N A. Chem. Mater., 2019, 31(18): 7493-7500.

    61. [61]

      PATERSON S, THOMPSON S A, GRACIE J, WARKA A W, DE LA RICA R. Chem. Sci., 2016, 7(9): 6232-6237.

    62. [62]

      MAYE M M, LIM I I S, LUO J, RAB Z, RABINOVICH D, LIU T, ZHONG C J. J. Am. Chem. Soc., 2005, 127(5): 1519-1529.

    63. [63]

      SI K J, CHEN Y, SHI Q, CHENG W. Adv. Sci., 2018, 5(1): 1700179.

    64. [64]

      LIU W, TAGAWA M, XIN H L, WANG T, EMAMY H, LI H, YAGER K G, STARR F W, TKACHENKO A V, GANG O. Science, 2016, 351(6273): 582-586.

    65. [65]

      ROGERS W B, SHIH W M, MANOHARAN V N. Nat. Rev. Mater., 2016, 1(3): 16008.

    66. [66]

      TIAN Y, ZHANG Y, WANG T, XIN H L, LI H, GANG O. Nat. Mater., 2016, 15(6): 654-661.

    67. [67]

      LU F, YAGER K G, ZHANG Y, XIN H, GANG O. Nat. Commun., 2015, 6: 6912.

    68. [68]

      CHEN G, GIBSON K J, LIU D, REES H C, LEE J H, XIA W, LIN R, XIN H L, GANG O, WEIZMANN Y. Nat. Mater., 2019, 18(2): 169-174.

    69. [69]

      JONES M R, KOHLSTEDT K L, O’BRIEN M N, WU J, SCHATZ G C, MIRKIN C A. Nano Lett., 2017, 17(9): 5830-5835.

    70. [70]

      CHEN G, WANG S, SONG L, SONG X, DENG Z. Chem. Commun., 2017, 53(70): 9773-9776.

    71. [71]

      RAEESI V, CHOU L Y T, CHAN W C W. Adv. Mater., 2016, 28(38): 8511-8518.

    72. [72]

      LI Z, ZHU Z, LIU W, ZHOU Y, HAN B, GAO Y, TANG Z. J. Am. Chem. Soc., 2012, 134(7): 3322-3325.

    73. [73]

      GUO J, TARDY B L, CHRISTOFFERSON A J, DAI Y, RICHARDSON J J, ZHU W, HU M, JU Y, CUI J, DAGASTINE R R, YAROVSKY I, CARUSO F. Nat. Nanotechnol., 2016, 11(12): 1105-1111.

    74. [74]

      M O N TA N A R E L L A F, A LTA N T Z I S T, Z A N A G A D, R A B O U W F T, B A L S S, B A E S J O U P, VANMAEKELBERGH D, VAN BLAADEREN A. ACS Nano, 2017, 11(9): 9136-9142.

    75. [75]

      CHEN O, RIEDEMANN L, ETOC F, HERRMANN H, COPPEY M, BARCH M, FARRAR C T, ZHAO J, BRUNS O T, WEI H, GUO P, CUI J, JENSEN R, CHEN Y, HARRIS D K, CORDERO J M, WANG Z, JASANOFF A, FUKUMURA D, REIMER R, DAHAN M, JAIN R K, BAWENDI M G. Nat. Commun., 2014, 5: 5093.

    76. [76]

      TRAN M V, SUSUMU K, MEDINTZ I L, ALGAR W R. Anal. Chem., 2019, 91(18): 11963-11971.

    77. [77]

      LI D, ZHANG Y, YANG P, YU M, GUO J, LU J Q, WANG C. ACS Appl. Mater. Interfaces, 2013, 5(23): 12329-12339.

    78. [78]

      KWON N, OH H, KIM R, SINHA A, KIM J, SHIN J, CHON J W M, LIM B. Nano Lett., 2018, 18(9): 5927-5932.

    79. [79]

      WANG B, LI R, GUO G, XIA Y. Chem. Commun., 2020, 56(63): 8996-8999.

    80. [80]

      ZHU H, WANG Y, CHEN C, MA M, ZENG J, LI S, XIA Y, GAO M. ACS Nano, 2017, 11(8): 8273-8281.

    81. [81]

      MAYILO S, HILHORST J, SUSHA A S, HÖHL C, FRANZL T, KLAR T A, ROGACH A L, FELDMANN J. J. Phys. Chem. C, 2008, 112(37): 14589-14594.

    82. [82]

      PRAKASH K T, SINGH N, VENKATESH V. Chem. Commun., 2019, 55(3): 322-325.

    83. [83]

      MOU M, WU Y, NIU Q, WANG Y, YAN Z, LIAO S. Chem. Commun., 2017, 53(23): 3357-3360.

    84. [84]

      ZHU J, HE K, DAI Z, GONG L, ZHOU T, LIANG H, LIU J. Anal. Chem., 2019, 91(13): 8237-8243.

    85. [85]

      LING Y, ZHANG D, CUI X, WEI M, ZHANG T, WANG J, XIAO L, XIA Y. Angew. Chem., Int. Ed, 2019, 58(31): 10542-10546.

    86. [86]

    87. [87]

      YANG F, SKRIPKA A, TABATABAEI M S, HONG S H, REN F, BENAYAS A, OH J K, MARTEL S, LIU X, VETRONE F, MA D. ACS Nano, 2019, 13(1): 408-420.

    88. [88]

      LU J, SUN J, LI F, WANG J, LIU J, KIM D, FAN C, HYEON T, LIN D. J. Am. Chem. Soc., 2018, 140(32): 10071-10074.

    89. [89]

      HU X, LI F, WANG S, XIA F, LING D. Adv. Healthcare Mater. 2018, 7(20): 1800359.

    90. [90]

      LI S, XU L, HAO C, SUN M, WU X, KUANG H, XU C. Angew. Chem., Int. Ed., 2019, 58(52): 19067-19072.

    91. [91]

      XIA H, LI F, HU X, PARK W, WANG S, JANG Y, KIM D H, LING D, HUI K M, HYEON T. ACS Cent. Sci., 2016, 2(11): 802-811.

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    3. [3]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    6. [6]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    11. [11]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    15. [15]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    16. [16]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(0)
  • Abstract views(789)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return