Citation: ZHU Hui,  XIA Yun-Sheng. Fabrication, Properties and Bio-imaging Application of Supraparticles[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1089-1105. doi: 10.19756/j.issn.0253-3820.211094 shu

Fabrication, Properties and Bio-imaging Application of Supraparticles

  • Corresponding author: XIA Yun-Sheng, xiayuns@mail.ahnu.edu.cn
  • Received Date: 31 January 2021
    Revised Date: 24 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No. 21775004).

  • Supraparticles (SPs) are the nano-agglomerates with a certain shape and hierarchical structure, which are self-assembled by same or different kinds of individual inorganic nanocrystals. SPs not only exhibit collective properties and/or synergistic effects, but their diverse shapes and devisable spatial structures provide multi-scale and multi-dimensional possibilities for the interactions with various biological systems. Thus, SPs show a variety of application potentials in bio-sensing, bio-imaging, diagnosis and even therapy, etc. In this review, the progress of SPs fabrication, properties, and their applications in bioimaging field in recent years are summarized, and the main problems and future development of their fabrication and applications in bio-medicine are discussed.
  • 加载中
    1. [1]

      CROZALS G D, BONNET R, FARRE C, CHAIX C. Nano Today, 2016, 11(4): 435-463.

    2. [2]

      MCNAMARA K, TOFAIL S A M. Adv. Phys. X, 2017, 2(1): 54-88.

    3. [3]

      KIM M, LEE J H, NAM J. M. Adv. Sci., 2019, 6(17): 1900471.

    4. [4]

      LI F, LU J, KONG X, HYEON T, LING D. Adv. Mater., 2017, 29(14): 1605897.

    5. [5]

      LAWLESS D. KAPOOR S, MEISEL D. J. Phys. Chem., 1995, 99(25): 10329-10335.

    6. [6]

      VELEV O D. Science, 2000, 287(5461): 2240-2243.

    7. [7]

      VELEV O D, FURUSAWA K, NAGAYAMA K. Langmuir, 1996, 1291(10): 2385-2391.

    8. [8]

      DIAMOND S. Clays Clay Miner., 1971, 19(4): 239-249.

    9. [9]

      BACHELLERIE J P, NICOLOSO M, ZALTA J P. Eur. J. Biochem., 1977, 79(1): 23-32.

    10. [10]

      XIA Y, TANG Z. Chem, Commun., 2012, 48(51): 6320-6336

    11. [11]

      PICCININI E, PALLAROLA D, BATTAGLINIC F, AZZARONI O. Mol. Syst. Des. Eng., 2016, 1(2): 155-162.

    12. [12]

      XUE Z, WANG P, PENG A, WANG T. Adv. Mater., 2019, 31(38): 1801441.

    13. [13]

      WINTZHEIMER S, GRANATH T, OPPMANN M, KISTER T, THAI T, KRAUS T, VOGEL N, MANDEL K. ACS Nano, 2018, 12(6): 5093-5120.

    14. [14]

      MA W, XU L, WANG L, KUANG H, XU C. Biosens, Bioelectron., 2016, 79(15): 220-236.

    15. [15]

      YAN C, WANG T. Chem. Soc. Rev., 2017, 46(5): 1483-1509.

    16. [16]

      WU X, HAO C, KUMAR J, KUANG H, KOTOV N A, LIZ-MARZÁN L M, XU C. Chem. Soc. Rev., 2018, 47(13): 4677-4696.

    17. [17]

      WU Z, YAO Q, ZANG S, XIE J. ACS Mater. Lett., 2019, 1(2): 237-248.

    18. [18]

      HOU K, HAN J, TANG Z. ACS Mater. Lett., 2020, 2(1): 95-106.

    19. [19]

      DENG K, LUO Z, TAN L, QUAN Z. Chem. Soc. Rev., 2020, 49(16): 6002-6038.

    20. [20]

      BOLES M A, ENGE M, TALAPIN D V. Chem. Rev., 2016, 116(18): 11220-11289.

    21. [21]

      MARINO E, KODGER T E, WEGDAM G H, SCHALL P. Adv. Mater., 2018, 30(43): 1803433.

    22. [22]

      YAO L, WANG B, YANG Y, CHEN X, HU J, YANG D, DONG A. Chem. Commun., 2019, 55(9): 1229.

    23. [23]

      VANMAEKELBERGH D. ACS Nano, 2018, 12(12): 12788-12794.

    24. [24]

      PARK S, HWANG H, KIM M, MOON J H, KIM S H. Nanoscale, 2020, 12(36): 18576-18594.

    25. [25]

      OPPMANN M, MILLER F, THUERAUF S, GROPPE P, PRIESCHL J, STAUCH C. MANDEL K. ACS Appl. Mater. Interfaces, 2018, 10(16): 14183-14192.

    26. [26]

      CANZIANI H, CHIERA S, SCHUFFENHAUER T, KOPP S P, METZGER F, BÜCK A, SCHMIDT M, VOGEL N. Small, 2020, 16(30): 2002076.

    27. [27]

      WINTZHEIMER S, OPPMANN M, DOLD M, PANNEK C, BAUERSFELD M L, HENFLING M, TRUPP S, SCHUG B, MANDEL K. Part. Part. Syst. Charact., 2019, 36(10): 1900254.

    28. [28]

      BAI F, WANG D, HUO Z, CHEN W, LIU L, LIANG X, CHEN C, WANG X, PENG Q, LI Y. Angew. Chem., Int. Ed., 2007, 119(35): 6770-6773.

    29. [29]

      SHI R, CAO Y, BAO Y, ZHAO Y, WATERHOUSE G I N, FANG Z, WU L Z, TUNG C H, YIN Y, ZHANG T. Adv. Mater., 2017, 29(27): 1700803.

    30. [30]

      LUO D, QIN X, SONG Q, QIAO X, ZHANG Z, XUE Z, LIU C, MO G, WANG T. Adv. Funct. Mater., 2017, 27(44): 1701982.

    31. [31]

      KISTER T, MRAVLAK M, SCHILLING T, KRAUS T. Nanoscale, 2016, 8(27): 13377-13384.

    32. [32]

      YANG Y, WANG B, SHEN X, YAO L, WANG L, CHEN X, XIE S, LI T, HU J, YANG D, DONG A. J. Am. Chem. Soc., 2018, 140(44): 15038-15047.

    33. [33]

      CHEN Y, NURUMBETOV G, CHEN R, BALLARD N, BON S A F. Langmuir, 2013, 29(41): 12657-12662.

    34. [34]

      KIM J H, JEON T Y, CHOI T M, SHIM T S, KIM S H, YANG S M. Langmuir, 2014, 30(6): 1473-1488.

    35. [35]

      GAO A, LIU J, YE L, SCHÖNECKER C, KAPPL M, BUTT H J, STEFFEN W. Langmuir, 2019, 35(43): 14042-14048.

    36. [36]

      SPERLING M, GRADZIELSKI M. Gels, 2017, 3(2): 15.

    37. [37]

      WOOH S, HUESMANN H, TAHIR M N, PAVEN M, WICHMANN K, VOLLMER D, TREMEL W, PAPADOPOULOS P, BUTT H J. Adv. Mater., 2015, 27(45): 7338-7343.

    38. [38]

      LIU W, KAPPL M, BUTT H J. ACS Nano, 2019, 13(12): 13949-13956.

    39. [39]

      LIU W, MIDYA J, KAPPL M, BUTT H J, NIKOUBASHMAN A. ACS Nano, 2019, 13(5): 4972-4979.

    40. [40]

      MAAS M, SILVÉRIO C C, LAUBE J, REZWAN K. J. Colloid Interface Sci., 2017, 501(1): 256-266.

    41. [41]

      YU Y, YANG X, LIU M, NISHIKAWA M, TEI T, MIYAKO E. ACS Appl. Mater. Interfaces, 2019, 11(21): 18978-18987.

    42. [42]

      LI N, ZHANG M, ZHA Y, CAO Y, MA Y. J. Colloid Interface Sci., 2020, 575(1): 54-60.

    43. [43]

      HUANG J, XIAO Y, PENG Z, XU Y, LI L, TAN L, YUAN K, CHEN Y. Adv. Sci., 2019, 6(12): 1900107.

    44. [44]

      MA Z, GAO G, LUO Z, TANG X, SUN T. J. Phys. Chem. C, 2019, 123(40): 24973-24978.

    45. [45]

      WANG Y, ZEIRI O, RAULA M, OUAY B L, STELLACCI F, WEINSTOCK I A. Nat. Nanotechnol., 2016, 12(2): 170-176.

    46. [46]

      NAKANISHI H, DEÁK A, HÓLLÓ G, LAGZI I. Angew. Chem., Int. Ed., 2018, 57(49): 16062–16066.

    47. [47]

      AI Y, LIU L, ZHANG C, QI L, HE M, LIANG Z, SUN H, LUO G, LIANG Q. ACS Appl. Mater. Interfaces, 2018, 10(38): 32180-32191.

    48. [48]

      MARTÍNEZ-ESAÍN J, FARAUDO J, PUIG T, OBRADORS X, ROS J, RICART S, YÁÑEZ R. J. Am. Chem. Soc., 2018, 140(6): 2127-2134.

    49. [49]

      LING J, GONG S, XIA Y. Adv. Mater. Interfaces, 2020, 7(18): 2000804.

    50. [50]

      MA M, ZHU H, LING J, GONG S, ZHANG Y, XIA Y, TANG Z. ACS Nano, 2020, 14(4): 4036-4044.

    51. [51]

      ZHANG W, XIAO J, CAO Q, WANG W, PENG X, GUAN G, CUI Z, ZHANG Y, WANG S, ZOU R, WAN X, QIU H, HU J. Nanoscale, 2018, 10(24): 11430-1140.

    52. [52]

      YEOM J, GUIMARAES P P G, AHN H M, JUNG B K, HU Q, MCHUGH K, MITCHELL M J, YUN C O, LANGER R, JAKLENEC A. Adv. Mater., 2019, 32(1): 1903878.

    53. [53]

      XIA Y, NGUYEN T D, YANG M, LEE B, SANTOS A, PODSIADLO P, TANG Z, GLOTZER S C, KOTOV N A. Nat. Nanotechnol., 2011, 6(9): 580-588.

    54. [54]

      WANG W, HAO C, SUN M, XU L, XU C, KUANG H. Adv. Funct. Mater., 2018, 28(22): 1800310.

    55. [55]

      CHEN Y, FU G, LI Y, GU Q, XU L, SUN D, TANG Y. J. Mater. Chem. A, 2017, 5(8): 3774-3779.

    56. [56]

      ZHUANG J, WU H, YANG Y, CAO Y C. J. Am. Chem. Soc., 2007, 129(46): 14166-14167.

    57. [57]

      SAINI M, VERMA A, TOMAR K, BHARADWAJ P K, SADHU K K. Chem. Commun., 2018, 54(91): 12836-12839.

    58. [58]

      JIANG K Y, WENG Y L, GUO S Y, YU Y, XIAO F X. Nanoscale, 2017, 9(43): 16922-16936.

    59. [59]

      PARK J I, NGUYEN T D, DE QUEIRÓS SILVEIRA G, BAHNG J H, SRIVASTAVA S, ZHAO G, SUN K, ZHANG P, GLOTZER S C, KOTOV N. A. Nat. Commun., 2014, 5: 3593.

    60. [60]

      DE Q, SILVEIRA G, RAMESAR N. S, NGUYEN T D, BAHNG J H, GLOTZER S C, KOTOV N A. Chem. Mater., 2019, 31(18): 7493-7500.

    61. [61]

      PATERSON S, THOMPSON S A, GRACIE J, WARKA A W, DE LA RICA R. Chem. Sci., 2016, 7(9): 6232-6237.

    62. [62]

      MAYE M M, LIM I I S, LUO J, RAB Z, RABINOVICH D, LIU T, ZHONG C J. J. Am. Chem. Soc., 2005, 127(5): 1519-1529.

    63. [63]

      SI K J, CHEN Y, SHI Q, CHENG W. Adv. Sci., 2018, 5(1): 1700179.

    64. [64]

      LIU W, TAGAWA M, XIN H L, WANG T, EMAMY H, LI H, YAGER K G, STARR F W, TKACHENKO A V, GANG O. Science, 2016, 351(6273): 582-586.

    65. [65]

      ROGERS W B, SHIH W M, MANOHARAN V N. Nat. Rev. Mater., 2016, 1(3): 16008.

    66. [66]

      TIAN Y, ZHANG Y, WANG T, XIN H L, LI H, GANG O. Nat. Mater., 2016, 15(6): 654-661.

    67. [67]

      LU F, YAGER K G, ZHANG Y, XIN H, GANG O. Nat. Commun., 2015, 6: 6912.

    68. [68]

      CHEN G, GIBSON K J, LIU D, REES H C, LEE J H, XIA W, LIN R, XIN H L, GANG O, WEIZMANN Y. Nat. Mater., 2019, 18(2): 169-174.

    69. [69]

      JONES M R, KOHLSTEDT K L, O’BRIEN M N, WU J, SCHATZ G C, MIRKIN C A. Nano Lett., 2017, 17(9): 5830-5835.

    70. [70]

      CHEN G, WANG S, SONG L, SONG X, DENG Z. Chem. Commun., 2017, 53(70): 9773-9776.

    71. [71]

      RAEESI V, CHOU L Y T, CHAN W C W. Adv. Mater., 2016, 28(38): 8511-8518.

    72. [72]

      LI Z, ZHU Z, LIU W, ZHOU Y, HAN B, GAO Y, TANG Z. J. Am. Chem. Soc., 2012, 134(7): 3322-3325.

    73. [73]

      GUO J, TARDY B L, CHRISTOFFERSON A J, DAI Y, RICHARDSON J J, ZHU W, HU M, JU Y, CUI J, DAGASTINE R R, YAROVSKY I, CARUSO F. Nat. Nanotechnol., 2016, 11(12): 1105-1111.

    74. [74]

      M O N TA N A R E L L A F, A LTA N T Z I S T, Z A N A G A D, R A B O U W F T, B A L S S, B A E S J O U P, VANMAEKELBERGH D, VAN BLAADEREN A. ACS Nano, 2017, 11(9): 9136-9142.

    75. [75]

      CHEN O, RIEDEMANN L, ETOC F, HERRMANN H, COPPEY M, BARCH M, FARRAR C T, ZHAO J, BRUNS O T, WEI H, GUO P, CUI J, JENSEN R, CHEN Y, HARRIS D K, CORDERO J M, WANG Z, JASANOFF A, FUKUMURA D, REIMER R, DAHAN M, JAIN R K, BAWENDI M G. Nat. Commun., 2014, 5: 5093.

    76. [76]

      TRAN M V, SUSUMU K, MEDINTZ I L, ALGAR W R. Anal. Chem., 2019, 91(18): 11963-11971.

    77. [77]

      LI D, ZHANG Y, YANG P, YU M, GUO J, LU J Q, WANG C. ACS Appl. Mater. Interfaces, 2013, 5(23): 12329-12339.

    78. [78]

      KWON N, OH H, KIM R, SINHA A, KIM J, SHIN J, CHON J W M, LIM B. Nano Lett., 2018, 18(9): 5927-5932.

    79. [79]

      WANG B, LI R, GUO G, XIA Y. Chem. Commun., 2020, 56(63): 8996-8999.

    80. [80]

      ZHU H, WANG Y, CHEN C, MA M, ZENG J, LI S, XIA Y, GAO M. ACS Nano, 2017, 11(8): 8273-8281.

    81. [81]

      MAYILO S, HILHORST J, SUSHA A S, HÖHL C, FRANZL T, KLAR T A, ROGACH A L, FELDMANN J. J. Phys. Chem. C, 2008, 112(37): 14589-14594.

    82. [82]

      PRAKASH K T, SINGH N, VENKATESH V. Chem. Commun., 2019, 55(3): 322-325.

    83. [83]

      MOU M, WU Y, NIU Q, WANG Y, YAN Z, LIAO S. Chem. Commun., 2017, 53(23): 3357-3360.

    84. [84]

      ZHU J, HE K, DAI Z, GONG L, ZHOU T, LIANG H, LIU J. Anal. Chem., 2019, 91(13): 8237-8243.

    85. [85]

      LING Y, ZHANG D, CUI X, WEI M, ZHANG T, WANG J, XIAO L, XIA Y. Angew. Chem., Int. Ed, 2019, 58(31): 10542-10546.

    86. [86]

    87. [87]

      YANG F, SKRIPKA A, TABATABAEI M S, HONG S H, REN F, BENAYAS A, OH J K, MARTEL S, LIU X, VETRONE F, MA D. ACS Nano, 2019, 13(1): 408-420.

    88. [88]

      LU J, SUN J, LI F, WANG J, LIU J, KIM D, FAN C, HYEON T, LIN D. J. Am. Chem. Soc., 2018, 140(32): 10071-10074.

    89. [89]

      HU X, LI F, WANG S, XIA F, LING D. Adv. Healthcare Mater. 2018, 7(20): 1800359.

    90. [90]

      LI S, XU L, HAO C, SUN M, WU X, KUANG H, XU C. Angew. Chem., Int. Ed., 2019, 58(52): 19067-19072.

    91. [91]

      XIA H, LI F, HU X, PARK W, WANG S, JANG Y, KIM D H, LING D, HUI K M, HYEON T. ACS Cent. Sci., 2016, 2(11): 802-811.

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    7. [7]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(620)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return