Citation: ZHAN Jia-Yin,  LIU Ran,  ZHANG Jing-Jing. Progress of Stimuli-responsive Nanomaterials in Tumor Analysis[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1133-1141. doi: 10.19756/j.issn.0253-3820.211086 shu

Progress of Stimuli-responsive Nanomaterials in Tumor Analysis

  • Corresponding author: ZHANG Jing-Jing, jing15209791@nju.edu.cn
  • Received Date: 29 January 2021
    Revised Date: 12 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22004063), the Natural Science Foundation of Jiangsu Province (No. 20200303) and the Innovation Fund of Nanjing University (No. 020514913414).

  • Under the trigger of endogenous stimuli (such as pH, overexpressed enzymes, redox, etc.) or exogenous stimuli (such as light, temperature, magnetic fields, etc.), stimuli-responsive nanomaterials can change their structures and properties in tumor tissues, so as to achieve precise drug delivery and imaging. Due to the differences in structure, composition and function, these stimuli-responsive nanomaterials have exhibited diverse applications, such as photothermal therapy, chemotherapy or imaging by triggered drug delivery. To explore the potential applications of stimuli-responsive nanomaterials, this review focuses on exogenous light-responsive and/or endogenous enzyme-responsive nanomaterials and summarizes the research progress in the areas of tumor-related therapy and bioimaging in the past few years.
  • 加载中
    1. [1]

      HANAHAN D, WEINBERG R A. Cell, 2011, 144(5): 646-674.

    2. [2]

      CHINEN A B, GUAN C M, FERRER J R, BARNABY S N, MERKEL T J, MIRKIN C A. Chem. Rev., 2015, 115(19): 10530-10574.

    3. [3]

      SHI J J, KANTOFF P W, WOOSTER R, FAROKHZAD O C. Nat. Rev. Cancer, 2017, 17(1): 20-37.

    4. [4]

      DONG P, RAKESH K P, MANUKUMAR H M, MOHAMMED Y H E, KARTHIK C S, SUMATHI S, MALLU P, QIN H L. Bioorg. Chem., 2019, 85: 325-336.

    5. [5]

      KASHKOOLI F M, SOLTANI M, SOURI M. J. Controlled Release, 2020, 327: 316-349.

    6. [6]

      THAKKAR S, SHARMA D, KALIA K, TEKADE R K. Acta Biomater., 2020, 101: 43-68.

    7. [7]

      PHAM S H, CHOI Y, CHOI J. Pharmaceutics, 2020, 12(7): 630.

    8. [8]

      RACCA L, CAUDA V. Nano-Micro Lett., 2020, 13(1): 11.

    9. [9]

      ZHANG M, GUO X L, WANG M F, LIU K H. J. Controlled Release, 2020, 323: 203-224.

    10. [10]

      ALEJO T, USON L, ARRUEBO M. J. Controlled Release, 2019, 314: 162-176.

    11. [11]

      RAZA A, RASHEED T, NABEEL F, HAYAT U, BILAL M, IQBAL H M N. Molecules, 2019, 24(6): 1117.

    12. [12]

      LUO Z M, JIN K, PANG Q, SHEN S, YAN Z Q, JIANG T, ZHU X Y, YU L, PANG Z Q, JIANG X G. ACS Appl. Mater. Interfaces, 2017, 9(37): 31612-31625.

    13. [13]

      ESPINOSA A, DI CORATO R, KOLOSNJAJ-TABI J, FLAUD P, PELLEGRINO T, WILHELM C. ACS Nano, 2016, 10(2): 2436-2446.

    14. [14]

      SANEJA A, KUMAR R, ARORA D, KUMAR S, PANDA A K, JAGLAN S. Drug Discov. Today, 2018, 23(5): 1115-1125.

    15. [15]

      KATO Y, OZAWA S, MIYAMOTO C, MAEHATA Y, SUZUKI A, MAEDA T, BABA Y. Cancer Cell Int., 2013, 13(1): 1-8.

    16. [16]

      LI Y, GAO G H, LEE D S. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(19): 4175-4182.

    17. [17]

      THOMAS R G, SURENDRAN S P, JEONG Y Y. Front. Mol. Biosci., 2020, 7: 1516-1526.

    18. [18]

      LI M, ZHAO G, SU W K, SHUAI Q. Front. Chem., 2020, 8: 647.

    19. [19]

      MI P. Theranostics, 2020, 10(10): 4557-4588.

    20. [20]

      MOHAPATRA A, UTHAMAN S, PARK I K. Front. Mol. Biosci., 2021, 7: 597634.

    21. [21]

      DYKMAN L, KHLEBTSOV N. Chem. Soc. Rev., 2012, 41(6): 2256-2282.

    22. [22]

      CASTILLO R R, LOZANO D, GONZALEZ B, MANZANO M, IZQUIERDO-BARBA I, VALLET-REGI M. Expert Opin. Drug Deliv., 2019, 16(4): 415-439.

    23. [23]

      DONG H, DU S R, ZHENG X Y, LYU G M, SUN L D, LI L D, ZHANG P Z, ZHANG C, YAN C H. Chem. Rev., 2015, 115(19): 10725-10815.

    24. [24]

      LI L, XING H, ZHANG J, LU Y. Acc. Chem. Res., 2019, 52(9): 2415-2426.

    25. [25]

      MAL N K, FUJIWARA M, TANAKA Y. Nature, 2003, 421(6921): 350-353.

    26. [26]

      WANG X R, HU J M, LIU G H, TIAN J, WANG H J, GONG M, LIU S Y. J. Am. Chem. Soc., 2015, 137(48): 15262-15275.

    27. [27]

      LIU Y, HE M, NIU M M, ZHAO Y Q, ZHU Y Z, LI Z H, FENG N P. Int. J. Nanomed., 2015, 10: 3081-3095.

    28. [28]

      MARTINEZ-CARMONA M, LOZANO D, BAEZA A, COLILLA M, VALLET-REGI M. Nanoscale, 2017, 9(41): 15967-15973.

    29. [29]

      YANG G B, LIU J J, WU Y F, FENG L Z, LIU Z. Coord. Chem. Rev., 2016, 320: 100-117.

    30. [30]

      YUAN A, WU J, TANG X, ZHAO L, XU F, HU Y. J. Pharm. Sci., 2013, 102(1): 6-28.

    31. [31]

      LI X N, SCHUMANN C, ALBARQI H A, LEE C J, ALANI A W G, BRACHA S, MILOVANCEV M, TARATULA O, TARATULA O. Theranostics, 2018, 8(3): 767-784.

    32. [32]

      ZHAO J, CHU H, ZHAO Y, LU Y, LI L. J. Am. Chem. Soc., 2019, 141(17): 7056-7062.

    33. [33]

      CHU H, ZHAO J, MI Y, ZHAO Y, LI L. Angew. Chem., Int. Ed., 2019, 58(42): 14877-14881.

    34. [34]

      LI C Y, ZHENG B, KANG Y F, TANG H W, PANG D W. ACS Sens., 2020, 5(1): 199-207.

    35. [35]

      HUANG L, LI Z J, ZHAO Y, ZHANG Y W, WU S, ZHAO J Z, HAN G. J. Am. Chem. Soc., 2016, 138(44): 14586-14591.

    36. [36]

      VANKAYALA R, KUO C L, NUTHALAPATI K, CHIANG C S, HWANG K C. Adv. Funct. Mater., 2015, 25(37): 5934-5945.

    37. [37]

      GOODMAN A M, NEUMANN O, NORREGAARD K, HENDERSON L, CHOI M R, CLARE S E, HALAS N J. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(47): 12419-12424.

    38. [38]

      DAI Y L, BI H T, DENG X R, LI C X, HE F, MA P A, YANG P P, LIN J. J. Mat. Chem. B, 2017, 5(11): 2086-2095.

    39. [39]

      LIU D, YANG F, XIONG F, GU N. Theranostics, 2016, 6(9): 1306-1323.

    40. [40]

      JO Y, CHOI N, KIM K, KOO H J, CHOI J, KIM H N. Theranostics, 2018, 8(19): 5259-5275.

    41. [41]

      EGEBLAD M, WERB Z. Nat. Rev. Cancer, 2002, 2(3): 161-174.

    42. [42]

      LI X, KIM J, YOON J, CHEN X Y. Adv. Mater., 2017, 29(23): 1606857

    43. [43]

      CALLMANN C E, BARBACK C V, THOMPSON M P, HALL D J, MATTREY R F, GIANNESCHI N C. Adv. Mater., 2015, 27(31): 4611-4615.

    44. [44]

      HU X, YANG P, HE J, LIANG R, NIU D, WANG H, LI Y. J. Mater. Chem. B, 2017, 5(30): 5931-5936.

    45. [45]

      LIU Y, DING X, LI J, LUO Z, HU Y, LIU J, DAI L, ZHOU J, HOU C, CAI K. Nanotechnology, 2015, 26(14): 145102

    46. [46]

      HAN H J, VALDEPEREZ D, JIN Q, YANG B, LI Z H, WU Y L, PELAZ B, PARAK W J, JI J. ACS Nano, 2017, 11(2): 1281-1291.

    47. [47]

      LI H, WANG P, DENG Y X, ZENG M Y, TANG Y, ZHU W H, CHENG Y S. Biomaterials, 2017, 139: 30-38.

    48. [48]

      WHITE B D, DUAN C, TOWNLEY H E. Biomolecules, 2019, 9(5): 202.

    49. [49]

      HUANG Y, SONG C, LI H, ZHANG R, JIANG R, LIU X, ZHANG G, FAN Q, WANG L, HUANG W. ACS Appl. Mater. Interfaces, 2015, 7(38): 21529-21537.

    50. [50]

      SHI H, GAO T, SHI L, CHEN T S, XIANG Y, LI Y Y, LI G X. Sci. Rep., 2018, 8: 16341.

    51. [51]

      YUE X, QIAO Y, GU D, WU Z, ZHAO W, LI X, YIN Y, ZHAO W, KONG D, XI R, MENG M. Sens. Actuators, B, 2020, 312: 127943.

    52. [52]

      ZHENG F F, WANG C, MENG T T, ZHANG Y Q, ZHANG P H, SHEN Q, ZHANG Y C, ZHANG J F, LI J X, MIN Q H, CHEN J N, ZHU J J. ACS Nano, 2019, 13(11): 12577-12590.

    53. [53]

      CHEN C Y, KIM T H, WU W C, HUANG C M, WEI H, MOUNT C W, TIAN Y, JANG S H, PUN S H, JEN A K Y. Biomaterials, 2013, 34(18): 4501-4509.

    54. [54]

      DUTTA S, SAMANTA P, DHARA D. Int. J. Biol. Macromol., 2016, 87: 92-100.

    55. [55]

      AN X, ZHU A, LUO H, KE H, CHEN H, ZHAO Y. ACS Nano, 2016, 10(6): 5947-5958.

    56. [56]

      YANG K, LIU Y, WANG Y, REN Q, GUO H, MATSON J B, CHEN X, NIE Z. Biomaterials, 2019, 223: 119460.

    57. [57]

      GAO S, ZHANG L W, WANG G H, YANG K, CHEN M L, TIAN R, MA Q J, ZHU L. Biomaterials, 2016, 79: 36-45.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    11. [11]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    12. [12]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    17. [17]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    20. [20]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

Metrics
  • PDF Downloads(0)
  • Abstract views(420)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return