Citation: LI Mao-Gang,  LIANG Jing,  YAN Chun-Hua,  TANG Hong-Sheng,  ZHANG Tian-Long,  LI Hua. Rapid Quantitative Analysis of Heavy Metals in Soil by Laser Induced Breakdown Spectroscopy Combined with Random Forest Algorithm[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1410-1418. doi: 10.19756/j.issn.0253-3820.211067 shu

Rapid Quantitative Analysis of Heavy Metals in Soil by Laser Induced Breakdown Spectroscopy Combined with Random Forest Algorithm

  • Corresponding author: ZHANG Tian-Long,  LI Hua, 
  • Received Date: 25 January 2021
    Revised Date: 9 April 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22073074, 21873076, 21675123, 21605123).

  • A rapid quantitative analysis method for heavy metals in soil based on laser-induced breakdown spectroscopy (LIBS) and random forest (RF) algorithm was developed. LIBS spectra of 22 soil samples were collected by LIBS spectrometer. The effects of different spectral pretreatment methods on the prediction performance of RF model based on LIBS spectra of soil samples were explored. With normalized LIBS spectral data as initial input variables, the RF calibration models based on full spectrum, characteristic band, variable importance and backward interval were constructed for the quantitative analysis of Cu, Cr, Pb and Ni in soil. The results showed that, compared with the RF calibration models based on full spectrum, characteristic band and variable importance, the RF calibration model based on backward interval (BiRF) had a better performance in quantitative analysis of Cu, Cr, Pb and Ni in soil. The optimal root mean square error (RMSE) values of Cu, Cr, Pb and Ni were 8.0221, 6.0120, 1.7382 and 1.2851 μg/g, respectively, and the optimal coefficient of determination (R2) values were 0.9610, 0.8985, 0.7021 and 0.9850, respectively. The results showed that the LIBS technology combined with BiRF algorithm was a feasible method for detection of heavy metals in soil.
  • 加载中
    1. [1]

      PALANSOORIYA K N, SHAHEEN S M, CHEN S S, TSANG D C W, OK Y S. Environ. Int., 2020, 134: 105046.

    2. [2]

      ZHANG J, LI H, ZHOU Y, LEI D, JING Y. Environ. Pollut., 2018, 235: 710-719.

    3. [3]

      GONDEK K, MIERZWA-HERSZTEK M, KOPEC M. J. Environ. Manage., 2018, 210: 1-2.

    4. [4]

      HOU S, ZHENG N, TANG L, JI X, LI Y, HU X. Environ. Int., 2019, 128: 430-437.

    5. [5]

      SHARMA S, NAGPAL A K, KAUR I. Food Chem., 2018, 255: 15-22.

    6. [6]

      YU J, ZHANG X, LU Q, SUN D, WANG X, ZHUA S, ZHANG Z, YANG W. Spectrochim. Acta, Part B, 2018, 145: 64-70.

    7. [7]

      ZHOU X, ZHENG N, SU C, WANG J, SOYEURT H. Environ. Pollut., 2019, 255: 113322.

    8. [8]

    9. [9]

    10. [10]

      HAO Z, LIU L, SHEN M, ZHOU R, LI J, GUO L, LI X, LU Y, ZENG X. J. Anal. At. Spectrom., 2018, 33: 1564-1570.

    11. [11]

      QI J, ZHANG T, TANG H, LI H. Spectrochim. Acta, Part B, 2018, 149: 288-293.

    12. [12]

      ZHANG T, LIANG L, WANG K, TANG H, YANG X, DUAN Y, LI H. J. Anal. At. Spectrom., 2014, 29: 2323-2329.

    13. [13]

      CONNORS B, SOMERS A, DAY D. Appl. Spectrosc., 2016, 70: 810-815.

    14. [14]

      TANG H, ZHANG T, YANG X, LI H. Anal. Methods, 2015, 7: 9171-9176.

    15. [15]

      NATARAJAN S, BAJAJ H. J. Environ. Chem. Eng., 2016, 4: 4631-4643.

    16. [16]

      NASSEF O, AHMED H, HARITH M. Anal. Methods, 2016, 8: 7096-7106.

    17. [17]

      DHANADA V, GEORGE S, KARTHA V, CHIDANGIL S, UNNIKRISHNAN V. Appl. Spectrosc. Rev., 2020. DOI: 10.1080/05704928.2020.1800486.

    18. [18]

      XU X, DU C, MA F, SHEN Y, WU K, LIANG D, ZHOU J. Geoderma, 2019, 355: 113905.

    19. [19]

      L'HERMITE D, VORS E, VERCOUTER T, MOUTIERS G. Environ. Sci. Pollut. Res., 2016, 23: 8219-8226.

    20. [20]

      SENESI G, SENESI N. Anal. Chim. Acta, 2016, 938: 7-17.

    21. [21]

      El HADDAD J, VILLOT-KADRI M, ISMAEL A, GALLOU G, MICHEL K, BRUYERE D, LAPERCHE V, CANIONI L, BOUSQUET B. Spectrochim. Acta, Part B, 2013, 79-80: 51-57.

    22. [22]

    23. [23]

      LI M, XUE J, DU Y, ZHANG T, LI H. Energy Fuels, 2019, 33(12): 12286-12294.

    24. [24]

    25. [25]

      ZHANG T, XIA D, TANG H, YANG X, LI H. Chemom. Intell. Lab. Syst., 2016, 157: 196-201.

    26. [26]

      KIM G, KWAK J, KIM K, LEE H, KIM K, YANG H, PARK K. J. Hazard. Mater., 2013, 263: 754-760.

    27. [27]

      BREIMAN L. Mach. Learn., 2001, 45: 5-32.

    28. [28]

    29. [29]

      LI M, XU Y, MEN J, YAN C, TANG H, ZHANG T, LI H. Spectrochim. Acta, Part A, 2021, 251: 119430.

    30. [30]

      WANG P, LI N, YAN C, FENG Y, DING Y, ZHANG T, LI H. Anal. Methods, 2019, 11: 3419-3428.

    31. [31]

      RAN Z, SUN L, LIU Y, PAN X, LI J, LIU Y. Infrared Phys. Technol., 2020, 105: 103207.

  • 加载中
    1. [1]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    7. [7]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    8. [8]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(19)
  • Abstract views(747)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return