Citation: LIU Xiao-Yan, ZHOU Yan, ZHENG Ting-Ting, TIAN Yang. Surface-Enhanced Raman Scattering Technology Based on TiO2 Nanorods for Detection of Telomerase Activity in Cells[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1218-1227. doi: 10.19756/j.issn.0253-3820.211066
-
The TiO2 nanorods (TiO2 NRs) were prepared by hydrothermal method, and a TiO2 NRs non-metallic surface-enhanced Raman spectroscopy (SERS) biosensor was constructed. With copper phthalocyanine (CuPc) as the adsorbed molecule, the developed TiO2 NRs SERS biosensor revealed remarkable Raman activity. Through experimental data and theoretical calculations, it was found that significant SERS enhancement (Enhancement factor (EF) =3.18×108) of CuPc was due to the chemical mechanism (CM) based on charge transfer. By utilizing the significant Raman response of CuPc on the TiO2 NRs and the specific recognition of telomere G-quadruplex, TiO2 NRs was used as a SERS biosensor for quantitative and sensitive detection of telomerase activity, with a detection limit down to 2.85×10-16 IU/L. In addition, due to the high selectivity and high sensitivity, the SERS biosensor was used to determine the telomerase activity as well as the cell numbers in Hela cells, making it an effective way to detect telomerase activity in other cells. This work not only established an approach for studying the Raman enhancement mechanism of semiconductor based on CM, but also paved a new way for the detection of related substances in clinical diagnosis and cell biomedical analysis.
-
-
[1]
DERIU C, CONTICELLO I, MEBEL A M, MCCORD B. Anal. Chem., 2019, 91(7): 4780-4789.
-
[2]
NIE S, EMORY S R. Science, 1997, 275(5303): 1102-1106.
-
[3]
ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10): 4946-4980.
-
[4]
WU D Y, LIU X M, DUAN S, XU X, REN B, LIN S H, TIAN Z Q. J. Phys. Chem. C, 2008, 112(11): 4195-4204.
-
[5]
TIAN Z Q, REN B, WU D Y. J. Phys. Chem. B, 2002, 106(37): 9463-9483.
-
[6]
ZHAO L L, JENSEN L, SCHATZ G C. J. Am. Chem. Soc., 2006, 128(9): 2911-2919.
-
[7]
TIAN Z Q, REN B. Annu. Rev. Phys. Chem., 2004, 55: 197-229.
-
[8]
WU D Y, LI J F, REN B, TIAN Z Q. Chem. Soc. Rev., 2008, 37(5): 1025-1041.
-
[9]
NAKATA K, FUJISHIMA A. J. Photochem. Photobiol., C, 2012, 13(3): 169-189.
-
[10]
YAMADA H, YAMAMOTO Y. Surf. Sci., 1983, 134(1): 71-90.
-
[11]
XUE X X, JI W, MAO Z, MAO H J, WANG Y, WANG X, RUAN W D, ZHAO B, LOMBARDI J R. J. Phys. Chem. C, 2012, 116(15): 8792-8797.
-
[12]
LIU L, PAN F, LIU C, HUANG L L, LI W, LU X H. ACS Appl. Nano Mater., 2018, 1(12): 6563-6566.
-
[13]
YANG L B, YIN D, SHEN Y, YANG M, Li X L, HAN X X, JIANG X, ZHAO B. Phys. Chem. Chem. Phys., 2017, 19(28): 18731-18738.
-
[14]
YANG L B, GONG M D, JIANG X, YIN D, QIN X Y, ZHAO B, RUAN W D. J. Raman Spectrosc., 2015, 46(3):287-292.
-
[15]
YANG L B, YIN D, SHEN Y, YANG M, LI X L, HAN X X, JIANG X, ZHAO B. Phys. Chem. Chem. Phys., 2017, 19(33): 22302-22308.
-
[16]
WANG X T, SHI W X, WANG S X, ZHAO H W, LIN J, YANG Z, CHEN M GUO L. J. Am. Chem. Soc., 2019, 141(14): 5856-5862.
-
[17]
QIAN R C, DING L, YAN L W, LIN M F, JU H X. Anal. Chem., 2014, 86(17): 8642-8648
-
[18]
CAI G F, TU J P, ZHOU D, LU L, ZHANG J H, WANG X L, GU C D. J. Phys. Chem. C, 2014, 118(13): 6690-6696.
-
[19]
DING J, HUANG Z N, ZHU J H, KOU S Z, ZHANG X B, YANG H S. Sci. Rep., 2015, 5: 17773.
-
[20]
MO R W, LEI Z Y, SUN K N, ROONEY D. Adv. Mater., 2014, 26(13): 2084-2088.
-
[21]
GUO Q H, XU M M, YUAN Y X, GU R A, YAO J L. Langmuir, 2016, 32(18): 4530-4537.
-
[22]
YANG L B, JIANG X, RUAN W D, ZHAO B, XU W Q, LOMBARDI J R. J. Phys. Chem. C, 2008, 112(50): 20095-20098.
-
[23]
YAKU H, MURASHIMA T, MIYOSHI D, SUGIMOTO N. Molecules, 2012, 17(9): 10586-10613.
-
[24]
XU L G, ZHAO S, MA W, WU X L, LI S, KUANG H, WANG L B, XU C L. Adv. Funct. Mater., 2016, 26(10): 1602-1608.
-
[25]
ZONG S F, WANG Z Y, CHEN H, HU G H, LIU M, CHEN P, CUI Y P. Nanoscale, 2014, 6(3): 1808-1816.
-
[26]
LIU X, WEI M, XU E S, YANG H T, WEI W, ZHANG Y J, LIU S Q. Biosens. Bioelectron., 2017, 91: 347-353.
-
[1]
-
-
[1]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[2]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[3]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[4]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[5]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[6]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[7]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[8]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[9]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[10]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[11]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[12]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[13]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[14]
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
-
[15]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[16]
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
-
[17]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[18]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[19]
Di WU , Ruimeng SHI , Zhaoyang WANG , Yuehua SHI , Fan YANG , Leyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135
-
[20]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(587)
- HTML views(62)