Citation:
LIU Xiao-Yan, ZHOU Yan, ZHENG Ting-Ting, TIAN Yang. Surface-Enhanced Raman Scattering Technology Based on TiO2 Nanorods for Detection of Telomerase Activity in Cells[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(7): 1218-1227.
doi:
10.19756/j.issn.0253-3820.211066
-
The TiO2 nanorods (TiO2 NRs) were prepared by hydrothermal method, and a TiO2 NRs non-metallic surface-enhanced Raman spectroscopy (SERS) biosensor was constructed. With copper phthalocyanine (CuPc) as the adsorbed molecule, the developed TiO2 NRs SERS biosensor revealed remarkable Raman activity. Through experimental data and theoretical calculations, it was found that significant SERS enhancement (Enhancement factor (EF) =3.18×108) of CuPc was due to the chemical mechanism (CM) based on charge transfer. By utilizing the significant Raman response of CuPc on the TiO2 NRs and the specific recognition of telomere G-quadruplex, TiO2 NRs was used as a SERS biosensor for quantitative and sensitive detection of telomerase activity, with a detection limit down to 2.85×10-16 IU/L. In addition, due to the high selectivity and high sensitivity, the SERS biosensor was used to determine the telomerase activity as well as the cell numbers in Hela cells, making it an effective way to detect telomerase activity in other cells. This work not only established an approach for studying the Raman enhancement mechanism of semiconductor based on CM, but also paved a new way for the detection of related substances in clinical diagnosis and cell biomedical analysis.
-
-
-
[1]
DERIU C, CONTICELLO I, MEBEL A M, MCCORD B. Anal. Chem., 2019, 91(7): 4780-4789.
-
[2]
NIE S, EMORY S R. Science, 1997, 275(5303): 1102-1106.
-
[3]
ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10): 4946-4980.
-
[4]
WU D Y, LIU X M, DUAN S, XU X, REN B, LIN S H, TIAN Z Q. J. Phys. Chem. C, 2008, 112(11): 4195-4204.
-
[5]
TIAN Z Q, REN B, WU D Y. J. Phys. Chem. B, 2002, 106(37): 9463-9483.
-
[6]
ZHAO L L, JENSEN L, SCHATZ G C. J. Am. Chem. Soc., 2006, 128(9): 2911-2919.
-
[7]
TIAN Z Q, REN B. Annu. Rev. Phys. Chem., 2004, 55: 197-229.
-
[8]
WU D Y, LI J F, REN B, TIAN Z Q. Chem. Soc. Rev., 2008, 37(5): 1025-1041.
-
[9]
NAKATA K, FUJISHIMA A. J. Photochem. Photobiol., C, 2012, 13(3): 169-189.
-
[10]
YAMADA H, YAMAMOTO Y. Surf. Sci., 1983, 134(1): 71-90.
-
[11]
XUE X X, JI W, MAO Z, MAO H J, WANG Y, WANG X, RUAN W D, ZHAO B, LOMBARDI J R. J. Phys. Chem. C, 2012, 116(15): 8792-8797.
-
[12]
LIU L, PAN F, LIU C, HUANG L L, LI W, LU X H. ACS Appl. Nano Mater., 2018, 1(12): 6563-6566.
-
[13]
YANG L B, YIN D, SHEN Y, YANG M, Li X L, HAN X X, JIANG X, ZHAO B. Phys. Chem. Chem. Phys., 2017, 19(28): 18731-18738.
-
[14]
YANG L B, GONG M D, JIANG X, YIN D, QIN X Y, ZHAO B, RUAN W D. J. Raman Spectrosc., 2015, 46(3):287-292.
-
[15]
YANG L B, YIN D, SHEN Y, YANG M, LI X L, HAN X X, JIANG X, ZHAO B. Phys. Chem. Chem. Phys., 2017, 19(33): 22302-22308.
-
[16]
WANG X T, SHI W X, WANG S X, ZHAO H W, LIN J, YANG Z, CHEN M GUO L. J. Am. Chem. Soc., 2019, 141(14): 5856-5862.
-
[17]
QIAN R C, DING L, YAN L W, LIN M F, JU H X. Anal. Chem., 2014, 86(17): 8642-8648
-
[18]
CAI G F, TU J P, ZHOU D, LU L, ZHANG J H, WANG X L, GU C D. J. Phys. Chem. C, 2014, 118(13): 6690-6696.
-
[19]
DING J, HUANG Z N, ZHU J H, KOU S Z, ZHANG X B, YANG H S. Sci. Rep., 2015, 5: 17773.
-
[20]
MO R W, LEI Z Y, SUN K N, ROONEY D. Adv. Mater., 2014, 26(13): 2084-2088.
-
[21]
GUO Q H, XU M M, YUAN Y X, GU R A, YAO J L. Langmuir, 2016, 32(18): 4530-4537.
-
[22]
YANG L B, JIANG X, RUAN W D, ZHAO B, XU W Q, LOMBARDI J R. J. Phys. Chem. C, 2008, 112(50): 20095-20098.
-
[23]
YAKU H, MURASHIMA T, MIYOSHI D, SUGIMOTO N. Molecules, 2012, 17(9): 10586-10613.
-
[24]
XU L G, ZHAO S, MA W, WU X L, LI S, KUANG H, WANG L B, XU C L. Adv. Funct. Mater., 2016, 26(10): 1602-1608.
-
[25]
ZONG S F, WANG Z Y, CHEN H, HU G H, LIU M, CHEN P, CUI Y P. Nanoscale, 2014, 6(3): 1808-1816.
-
[26]
LIU X, WEI M, XU E S, YANG H T, WEI W, ZHANG Y J, LIU S Q. Biosens. Bioelectron., 2017, 91: 347-353.
-
[1]
-
-
-
[1]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[2]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[3]
Yue-Zhou Zhu , Kun Wang , Shi-Sheng Zheng , Hong-Jia Wang , Jin-Chao Dong , Jian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040
-
[4]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[5]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
-
[6]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[7]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[8]
Weilai Yu , Chuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022
-
[9]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[10]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[11]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[12]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[13]
Pengli GUAN , Renhu BAI , Xiuling SUN , Bin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058
-
[14]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[15]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[16]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[17]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[18]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[19]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[20]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(855)
- HTML views(70)