Citation: LIU Xiao-Yan,  ZHOU Yan,  ZHENG Ting-Ting,  TIAN Yang. Surface-Enhanced Raman Scattering Technology Based on TiO2 Nanorods for Detection of Telomerase Activity in Cells[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1218-1227. doi: 10.19756/j.issn.0253-3820.211066 shu

Surface-Enhanced Raman Scattering Technology Based on TiO2 Nanorods for Detection of Telomerase Activity in Cells

  • Corresponding author: ZHENG Ting-Ting,  TIAN Yang, 
  • Received Date: 25 January 2021
    Revised Date: 2 March 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21827814, 21974049) and the Shanghai Rising-star Program (No. 2QA1403300)

  • The TiO2 nanorods (TiO2 NRs) were prepared by hydrothermal method, and a TiO2 NRs non-metallic surface-enhanced Raman spectroscopy (SERS) biosensor was constructed. With copper phthalocyanine (CuPc) as the adsorbed molecule, the developed TiO2 NRs SERS biosensor revealed remarkable Raman activity. Through experimental data and theoretical calculations, it was found that significant SERS enhancement (Enhancement factor (EF) =3.18×108) of CuPc was due to the chemical mechanism (CM) based on charge transfer. By utilizing the significant Raman response of CuPc on the TiO2 NRs and the specific recognition of telomere G-quadruplex, TiO2 NRs was used as a SERS biosensor for quantitative and sensitive detection of telomerase activity, with a detection limit down to 2.85×10-16 IU/L. In addition, due to the high selectivity and high sensitivity, the SERS biosensor was used to determine the telomerase activity as well as the cell numbers in Hela cells, making it an effective way to detect telomerase activity in other cells. This work not only established an approach for studying the Raman enhancement mechanism of semiconductor based on CM, but also paved a new way for the detection of related substances in clinical diagnosis and cell biomedical analysis.
  • 加载中
    1. [1]

      DERIU C, CONTICELLO I, MEBEL A M, MCCORD B. Anal. Chem., 2019, 91(7): 4780-4789.

    2. [2]

      NIE S, EMORY S R. Science, 1997, 275(5303): 1102-1106.

    3. [3]

      ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10): 4946-4980.

    4. [4]

      WU D Y, LIU X M, DUAN S, XU X, REN B, LIN S H, TIAN Z Q. J. Phys. Chem. C, 2008, 112(11): 4195-4204.

    5. [5]

      TIAN Z Q, REN B, WU D Y. J. Phys. Chem. B, 2002, 106(37): 9463-9483.

    6. [6]

      ZHAO L L, JENSEN L, SCHATZ G C. J. Am. Chem. Soc., 2006, 128(9): 2911-2919.

    7. [7]

      TIAN Z Q, REN B. Annu. Rev. Phys. Chem., 2004, 55: 197-229.

    8. [8]

      WU D Y, LI J F, REN B, TIAN Z Q. Chem. Soc. Rev., 2008, 37(5): 1025-1041.

    9. [9]

      NAKATA K, FUJISHIMA A. J. Photochem. Photobiol., C, 2012, 13(3): 169-189.

    10. [10]

      YAMADA H, YAMAMOTO Y. Surf. Sci., 1983, 134(1): 71-90.

    11. [11]

      XUE X X, JI W, MAO Z, MAO H J, WANG Y, WANG X, RUAN W D, ZHAO B, LOMBARDI J R. J. Phys. Chem. C, 2012, 116(15): 8792-8797.

    12. [12]

      LIU L, PAN F, LIU C, HUANG L L, LI W, LU X H. ACS Appl. Nano Mater., 2018, 1(12): 6563-6566.

    13. [13]

      YANG L B, YIN D, SHEN Y, YANG M, Li X L, HAN X X, JIANG X, ZHAO B. Phys. Chem. Chem. Phys., 2017, 19(28): 18731-18738.

    14. [14]

      YANG L B, GONG M D, JIANG X, YIN D, QIN X Y, ZHAO B, RUAN W D. J. Raman Spectrosc., 2015, 46(3):287-292.

    15. [15]

      YANG L B, YIN D, SHEN Y, YANG M, LI X L, HAN X X, JIANG X, ZHAO B. Phys. Chem. Chem. Phys., 2017, 19(33): 22302-22308.

    16. [16]

      WANG X T, SHI W X, WANG S X, ZHAO H W, LIN J, YANG Z, CHEN M GUO L. J. Am. Chem. Soc., 2019, 141(14): 5856-5862.

    17. [17]

      QIAN R C, DING L, YAN L W, LIN M F, JU H X. Anal. Chem., 2014, 86(17): 8642-8648

    18. [18]

      CAI G F, TU J P, ZHOU D, LU L, ZHANG J H, WANG X L, GU C D. J. Phys. Chem. C, 2014, 118(13): 6690-6696.

    19. [19]

      DING J, HUANG Z N, ZHU J H, KOU S Z, ZHANG X B, YANG H S. Sci. Rep., 2015, 5: 17773.

    20. [20]

      MO R W, LEI Z Y, SUN K N, ROONEY D. Adv. Mater., 2014, 26(13): 2084-2088.

    21. [21]

      GUO Q H, XU M M, YUAN Y X, GU R A, YAO J L. Langmuir, 2016, 32(18): 4530-4537.

    22. [22]

      YANG L B, JIANG X, RUAN W D, ZHAO B, XU W Q, LOMBARDI J R. J. Phys. Chem. C, 2008, 112(50): 20095-20098.

    23. [23]

      YAKU H, MURASHIMA T, MIYOSHI D, SUGIMOTO N. Molecules, 2012, 17(9): 10586-10613.

    24. [24]

      XU L G, ZHAO S, MA W, WU X L, LI S, KUANG H, WANG L B, XU C L. Adv. Funct. Mater., 2016, 26(10): 1602-1608.

    25. [25]

      ZONG S F, WANG Z Y, CHEN H, HU G H, LIU M, CHEN P, CUI Y P. Nanoscale, 2014, 6(3): 1808-1816.

    26. [26]

      LIU X, WEI M, XU E S, YANG H T, WEI W, ZHANG Y J, LIU S Q. Biosens. Bioelectron., 2017, 91: 347-353.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    3. [3]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

    6. [6]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    7. [7]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    8. [8]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-0. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    12. [12]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    13. [13]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    16. [16]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    17. [17]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    18. [18]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Congqi ZhuBo LiuRuchun Li . Dual active sites enhancing alkaline H2-production performance. Acta Physico-Chimica Sinica, 2025, 41(11): 100146-0. doi: 10.1016/j.actphy.2025.100146

Metrics
  • PDF Downloads(0)
  • Abstract views(930)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return