Citation: WANG Ling-Yuan,  WANG Hao-Wei,  LU Si-Min,  LONG Yi-Tao. Single-entity Measurement Based on Electro-optical Confinement of Nanopores[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1166-1175. doi: 10.19756/j.issn.0253-3820.211041 shu

Single-entity Measurement Based on Electro-optical Confinement of Nanopores

  • Corresponding author: LU Si-Min,  LONG Yi-Tao, 
  • Received Date: 18 January 2021
    Revised Date: 22 March 2021

    Fund Project: Supported by the National Training Program of Innovational for Undergraduates (No. 202010284101Z).

  • Nanopores technique is a label-free, high-throughput, high-spatial-temporal resolution electrochemical measurement method for single-molecule level analysis, which is widely used for single-entity measurements such as single molecules, single particles, and single cells. Nanopores not only have adjustable three-dimensional space to confine single analytes, but also possess an ability to enhance the electrical and magnetic fields. In short, the nanopores exhibit unique sub-wavelength optical properties. In this review, we introduce the principle of nanopore electrochemical analysis, and give a perspective and detailed overview of its application in electro-optical binding measurements.
  • 加载中
    1. [1]

      YING Y L, WANG J J, LEACH A R, JIANG Y, LONG Y T. Sci. China: Chem., 2020, 63(5): 589-618.

    2. [2]

      BAKER L A. J. Am. Chem. Soc., 2018, 140(46): 15549-15559.

    3. [3]

      EDWARDS M, ROBINSON D, REN H, CHEYNE C G, TAN C S, WHITE H S. Faraday Discuss., 2018, 210: 9-28.

    4. [4]

      LU S M, PENG Y Y, YING Y L, LONG Y T. Anal. Chem., 2020, 92(8): 5621-5644.

    5. [5]

      YING Y L, LONG Y T. J. Am. Chem. Soc., 2019, 141(40): 15720-15729.

    6. [6]

      REINER J E, BALIJEPALLI A, ROBERTSON J W, CAMPELL J, SUEHLE J, KASIANOWICZ J J. Chem. Rev., 2012, 112(12): 6431-6451.

    7. [7]

      OSTOLAZA H, BAKAS L, GONI F. J. Membr. Biol., 1997, 158(2): 137-145.

    8. [8]

      CAO C, LONG Y T. Acc. Chem. Res., 2018, 51(2): 331-341.

    9. [9]

      CARLSEN A T, ZAHID O K, RUZICKA J, TAYLOR E W, HALL A R. ACS Nano, 2014, 8(5): 4754-4760.

    10. [10]

      KOWALCZYK S W, GROSBERG A Y, RABIN Y, DEKKER C. Nanotechnology, 2011, 22(31): 315101.

    11. [11]

      SHI W Q, FRIEDMAN A K, BAKER L A. Anal. Chem., 2017, 89(1): 157-188.

    12. [12]

      LU S M, WU X Y, LI M Y, YING Y L, LONG Y T. View, 2020, 1(4): 20200006.

    13. [13]

      CAO C, YING Y L, HU Z L, LIAO D F, TIAN H, LONG Y T. Nat. Nanotechnol., 2016, 11(8): 713-718.

    14. [14]

      LI M Y, YING Y L, LONG Y T. Acta Chim. Sin., 2019, 77(10): 984-988.

    15. [15]

      BRODSKY R A, MUKHINA G L, LI S, NELSON K L, CHINURAZZI P L, BUCKLEY J T, BOROWITZ M J. Am. J. Clin. Pathol., 2000, 114(3): 459-466.

    16. [16]

      LI S, WU X Y, LI M Y, LIU S C, YING Y L, LONG Y T. Small Methods, 2020, 4(11): 2000014.

    17. [17]

      PIGUET F, OULDALI H, PASTORIZA-GALLEGO M, MANIVET P, PELTA J, OUKHALED A. Nat. Commun., 2018, 9: 966.

    18. [18]

      WANG Y Q, LI M Y, QIU H, CAO C. Anal. Chem., 2018, 90(13): 7790-7794.

    19. [19]

      LI M Y, YING Y L, LI S, LONG Y T. ACS Nano, 2020, 14(10): 12571-12578.

    20. [20]

      HU Z L, YING Y L, HUO M Z, LONG Y T. J. Chem. Educ., 2020, 97(12): 4345-4354.

    21. [21]

      LI J L, STEIN D, MCMULLAN C, BRANTON D, AZIZ M J, GOLOVCHENKO J A. Nature, 2001, 412(6843): 166-169.

    22. [22]

      STORM A, CHEN J, LING X, HENNY Z. Nat. Mater., 2003, 2(8): 537-540.

    23. [23]

      GILBOA T, ZREHEN A, GIRSAULT A, MELLER A. Sci. Rep., 2018, 8: 9765.

    24. [24]

      YANAGI I, FUJISAKI K, HAMAMURA H, TAKEDA K. J. Appl. Phys., 2017, 121(4): 045301.

    25. [25]

      SHI X, LI Q, GAO R, SI W. J. Phys. Chem. Lett., 2018, 9(16): 4686-4694.

    26. [26]

      LIU S C, YING Y L, LI W H, WAN Y J. Chem. Sci., 2021, 12(9): 3282-3289.

    27. [27]

      LU S M, LONG Y T. TrAC-Trends Anal. Chem., 2019, 117: 39-46.

    28. [28]

      YU R J, YING Y L, GAO R, LONG Y T. Angew. Chem., Int. Ed., 2019, 58(12): 3706-3714.

    29. [29]

      PAKHOMOV A G, GIANULIS E, VERNIER P T, SEMENOV L, XIAO S, PAKHOMOV O N. Biochim. Biophys. Acta-Biomembr., 2015, 1848(4): 958-966.

    30. [30]

      XUE L, YAMAZAKI H, REN R, WANUNU M, IVANOV A P, EDEL J B. Nat. Rev. Mater., 2020, 5(12): 931-951.

    31. [31]

      LONG Y T. Confining Electrochemistry to Nanopores. Royal Society of Chemistry, 2020.

    32. [32]

      HUANG S, ROMERO-RUIZ M, CASTELL O K,BAYLEY H, WALLACE M. Nat. Nanotechnol., 2015, 10(11): 986-991.

    33. [33]

      WANG Y Q, WANG Y, DU X Y, YAN S H, ZHANG P K, CHEN H Y, HUANG S. Sci. Adv., 2019, 5(9): eaar3309.

    34. [34]

      SONI G V, SINGER A, YU Z, SUN Y J, MYNALLY B, MELLAR A. Rev. Sci. Instrum., 2010, 81(1): 014301.

    35. [35]

      MCNALLY B, SINGER A, YU Z L, SUN Y J, WENG Z P, MELLAR A. Nano Lett., 2010, 10(6): 2237-2244.

    36. [36]

      ANDERSON B N, ASSAD O N, GILBOA T, SQUIRES A. ACS Nano, 2014, 8(11): 11836-11845.

    37. [37]

      CHANSIN G A, MULERO R, HONG J, KIM M, DEMELLO A J, EDEL J B. Nano Lett., 2007, 7(9): 2901-2906.

    38. [38]

      DI FIORI N, SQUIRES A, BAR D, GILBOA T, MOUSTAKAS T D, MELLAR A. Nat. Nanotechnol., 2013, 8(12): 946-951.

    39. [39]

      YING Y L, LI Y J, MEI J, GAO R, HU Y X. Nat. Commun., 2018, 9: 3657.

    40. [40]

      BETHE H A. Phys. Rev., 1944, 66(7-8): 163.

    41. [41]

      ZHU P, CRAIGHEAD H G. Annu. Rev. Biophys., 2012, 41: 269-293.

    42. [42]

      LEVENE M J, KORLACH J, TURNER S W, CRAIGHEAD H G, WEBB W W. Science, 2003, 299(5607): 682-686.

    43. [43]

      RIGNEAULT H, CAPOULADE J, DINTINGER J, WENGER J, BONOD N, POPOV E, EBBESEN T W, LENNE P. Phys. Rev. Lett., 2005, 95(11): 117401.

    44. [44]

      JADHAV V, HOOGERHEIDE D P, KORLACH J, WANUNU M. Nano Lett., 2018, 19(2): 921-929.

    45. [45]

      LARKIN J, HENLEY R Y, JADHAV V, KORLACH J, WANUNU M. Nat. Nanotechnol., 2017, 12(12): 1169-1175.

    46. [46]

      LARKIN J, FOQUET M, TURNER S W, KORLACH J. Nano Lett., 2014, 14(10): 6023-6029.

    47. [47]

      KLUGHAMMER N, DEKKER C. Nanotechnology, 2021, 32(18): 14.

    48. [48]

      NICOLI F, VERSCHUEREN D, KLEIN M, DEKKER C. Nano Lett., 2014, 14(12): 6917-6925.

    49. [49]

      SHI X, GAO R, YING Y L, SI W, CHEN Y F, LONG Y T. ACS Sens., 2016, 1(9): 1086-1090.

    50. [50]

      ZHANG L, LI Y, LI D W, JING C, CHEN X Y, LV M, HUANG Q, LONG Y T, WILNER I. Angew. Chem., Int. Ed., 2011, 123(30): 6921-6924.

    51. [51]

      EBBESEN T W, LEZEC H J, GHAEMI H, THIO TM WOLFF P A. Nature, 1998, 391(6668): 667-669.

    52. [52]

      JONSSON M P, DEKKER C. Nano Lett., 2013, 13(3): 1029-1033.

    53. [53]

      SHI X, VERSCHUEREN D, PUD S, DEKKER C. Small, 2018, 14(18): 1703307.

    54. [54]

      SHI X, VERSCHUEREN D V, DEKKER C. Nano Lett., 2018, 18(12): 8003-8010.

    55. [55]

      VERSCHUEREN D, SHI X, DEKKER C. Small Methods, 2019, 3(5): 1800465.

    56. [56]

      BELKIN M, CHAO S H, JONSSON M P, DEKKER C, AKSIMENTIEV A. ACS Nano, 2015, 9(11): 10598-10611.

    57. [57]

      PUD S, VERSCHUEREN D, VUKOVIC N, PLESA C, JOSSON M P, DEKKER C. Nano Lett., 2015, 15(10): 7112-7117.

    58. [58]

      CRICK C R, ALBELLA P, NG B, ROSCHUK T, EDEL J B. Nano Lett., 2015, 15(1): 553-559.

    59. [59]

      FREEDMAN K J, CRICK C R, ALBELLA P, BARIK A, IVANOV A P, MAIER S A, OH S H, EDEL J B. ACS Photonics, 2016, 3(6): 1036-1044.

    60. [60]

      CAO J, LIU H L, YANG J M, LI Z Q, YANG D R, JI L N, WANG K, XIA X H. ACS Sens., 2020, 5(7): 2198-2204.

    61. [61]

      YING Y L, LI Z Y, HU Z L, ZHANG J J, MENG F N, CAO C, LONG Y T, TIAN H. Chem, 2018, 4(8): 1893-1901.

    62. [62]

      HU Z L, LI Z Y, YING Y L, ZHANG J J, CAO C, LONG Y T, TIAN H. Anal. Chem., 2018, 90(7): 4268-4272.

    63. [63]

      YING Y L, ZHANG J J, MENG F N, CAO C, YAO X Y, WILLNER I, TIAN H, LONG Y T. Sci. Rep., 2013, 3: 1662.

    64. [64]

      LI P, XIE G H, KONG X Y, ZHANG Z, XIAO K, WEN L P, JIANG L. Angew. Chem., Int. Ed., 2016, 55(50): 15637-15641.

    65. [65]

      ZHANG X, ZHANG J J, YING Y L, TIAN H, LONG Y T. Chem. Sci., 2014, 5(7): 2642-2646.

    66. [66]

      QIN L X, LI Y, LI D W, JING C, CHEN B Q, MA W, HEYMAN A, SHOSEYOV O, WILLNER I, TIAN H, LONG Y T. Angew. Chem., Int. Ed., 2012, 124(1): 144-148.

    67. [67]

      LIU G L, LEE L P. Appl. Phys. Lett., 2005, 87(7): 074101.

  • 加载中
    1. [1]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    2. [2]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    3. [3]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    4. [4]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    5. [5]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    11. [11]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    12. [12]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    13. [13]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    14. [14]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    18. [18]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    19. [19]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    20. [20]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

Metrics
  • PDF Downloads(0)
  • Abstract views(596)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return