Citation: ZHANG Li-Yu, TANG Ke-Qi, HU Jun. Investigation of Conformational Changes of Hemoglobin at Different pH Values and in Different Alcohol Solutions by Electrospray Ionization-Trapped Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1335-1341. doi: 10.19756/j.issn.0253-3820.211021
-
Protein, as one of the important biomolecules, plays important roles in many biological processes. Studies have shown that the function of the protein is closely related to its structure. Therefore, elucidating the structure changes of the protein in a given biological environment is one of the main ways to understand its biological function in a specific process. In this work, a high resolution mass spectrometry (MS) combined with ion mobility spectrometry (IMS) was used to study the conformation changes of hemoglobin under different conditions, such as different pH values and different solvents. The result showed that the structure of hemoglobin changed significantly at pH=4 with observed heme drop. Moreover, the ion mobility of the hemoglobin ions increased as the decrease of pH values, indicating the unfolding of the protein under the acidic solution conditions. By measuring the change of ion mobility, the unfolding of hemoglobin at different pH values was determined. Also the structural changes of hemoglobin ions as the change of the charge states at the same pH values were investigated and it was found that the structure of the hemoglobin became more extended as the increase of the protein charge state. In addition, it was found that the structure of the hemoglobin was also significantly affected by the type and the concentration of alcohol in the solvent. Specifically, the structure of hemoglobin in 50% methanol in water was about the same as the structure in 40% of ethanol aqueous solution. It was also found that the structure of hemoglobin collapsed in high concentration of alcohol solution, which made the structure of hemoglobin in high concentration of alcohol solution more compact.
-
-
[1]
SAMUEL P P, OU W, PHILLIPS G N, OLSON J S. Biophys. J., 2017, 112(3): 59a.
-
[2]
WOODALL D W, BROWN C J, RAAB S A, EL-BABA T J, LAGANOWSKY A, RUSSELL D H, CLEMMER D E. Anal. Chem., 2020, 92(4): 3440-3446.
-
[3]
YONETANI T, PARK S I, TSUNESHIGE A, IMAI K, KANAORI K. J. Biol. Chem., 2002, 277(37): 34508-34520.
-
[4]
EATON W A, HENRY E R, HOFRICHTER J, BETTATI S, VIAPPIANI C, MOZZARELLI A. IUBMB Life, 2007, 59(8-9): 586-599.
-
[5]
BIERNAT J, KANIYAPPAN S, MEYER H E, MANDELKOW E M, WARSCHEID B, MANDELKOW E. J. Biol. Chem., 2020, 295(52): 18213-18225.
-
[6]
SALMAN S M, JOVCEVSKI B, MITTAL P, FATIMA B, HUSSAIN D, JABEEN F, NAEEM A M, LOUISE P T, NAJAM U H M. Microchem. J., 2020, 159: 105351-105354.
-
[7]
GILAD L, TAMAR Z, ORI B, ARIE A, RONALD G U, AARON C. Biochem. Biophys. Res. Commun., 2016, 475(1): 13-18.
-
[8]
ADAMS K J, MONTERO D, AGA D, FERNANDEZ-LIMA F. Int. J. Ion Mobility. Spectrom., 2016, 19(2-3): 69-76.
-
[9]
TRAN D T, BANERJEE S, ALAYASH A I, CRUMBLISS A L, FITZGERALD M C. Anal. Chem., 2012, 84(3): 1653-1660.
-
[10]
HOSSAIN B M, KONERMANN L. Anal. Chem., 2006, 78(5): 1613-1619.
-
[11]
SHELIMOV K B, JARROLD M F. J. Am. Chem. Soc., 1997, 119: 2987-2994.
-
[12]
STEPHEN J V, DAVID E C. J. Am. Soc. Mass Spectrom., 2002, 13(5): 506-517.
-
[13]
FERNANDEZ-LIMA F, BLASE R C, RUSSELL D H. Int. J. Mass Spectrom., 2010, 298(1-3): 111-118.
-
[14]
PREMILA P S, MARK A W, WILLIAM C O, DAVID A C, GEORGE N P, JOHN S O. Biophys. J., 2020, 118(6): 1381-1400.
-
[15]
WALTENSPÜHL Y, EHRENMANN J, KLENK C, PLÜCKTHUN A. Molecules, 2021, 26(5): 1465-1465.
-
[16]
TOM W K, JOSHUA T B, IAIN C, SARAH A H, ALISON E A. Int. J. Mass Spectrom., 2009, 298(1): 17-23.
-
[17]
DIXIT S M, POLASKY D A, RUOTOLO B T. Curr. Opin. Chem. Biol., 2018, 42: 93-100.
-
[18]
HUANG Y X, WU Z J, HUANG B T, LUO M. PLoS One, 2013, 8(11): e81708.
-
[19]
BUTCHER D, BERNAD S, DERRIEN V, SEBBAN P, MIKSOVSKA J, FERNANDEZ-LIMA F. Int. J. Mass Spectrom., 2018, 430: 37-43.
-
[20]
-
[21]
HERNANDEZ D R, DEBORD J D, RIDGEWAY M E, KAPLAN D A, PARK M A, FERNANDEZ-LIMA F. Analyst, 2014, 139(8): 1913-1921.
-
[22]
WOODS L A, RADFORD S E, ASHCROFT A E. Biochim. Biophys. Acta, 2013, 1834(6): 1257-1268.
-
[23]
MICHELMANN K, SILVEIRA J A, RIDGEWAY M E, PARK M A. J. Am. Soc. Mass Spectrom., 2015, 26(1): 14-24.
-
[24]
CHAI J, XUE Y, LIU R, WANG M. Spectrochim. Acta, Part A, 2011, 79(5): 1406-1410.
-
[25]
LIU R, QIN P, LI W, ZHAO X, HAO X. J. Biochem. Mol. Toxicol., 2010, 24(1): 66-71.
-
[1]
-
-
[1]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[2]
Peipei CUI , Xin LI , Yilin CHEN , Zhilin CHENG , Feiyan GAO , Xu GUO , Wenning YAN , Yuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234
-
[3]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[4]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[5]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[6]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[7]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[8]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[9]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[10]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[11]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[12]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[13]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[14]
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
-
[15]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[16]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[17]
Ruoxi Sun , Yiqian Xu , Shaoru Rong , Chunmiao Han , Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001
-
[18]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
-
[19]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[20]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[1]
Metrics
- PDF Downloads(13)
- Abstract views(800)
- HTML views(64)