Citation: ZHANG Li-Yu,  TANG Ke-Qi,  HU Jun. Investigation of Conformational Changes of Hemoglobin at Different pH Values and in Different Alcohol Solutions by Electrospray Ionization-Trapped Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(8): 1335-1341. doi: 10.19756/j.issn.0253-3820.211021 shu

Investigation of Conformational Changes of Hemoglobin at Different pH Values and in Different Alcohol Solutions by Electrospray Ionization-Trapped Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometry

  • Corresponding author: TANG Ke-Qi,  HU Jun, 
  • Received Date: 11 January 2021
    Revised Date: 5 May 2021

  • Protein, as one of the important biomolecules, plays important roles in many biological processes. Studies have shown that the function of the protein is closely related to its structure. Therefore, elucidating the structure changes of the protein in a given biological environment is one of the main ways to understand its biological function in a specific process. In this work, a high resolution mass spectrometry (MS) combined with ion mobility spectrometry (IMS) was used to study the conformation changes of hemoglobin under different conditions, such as different pH values and different solvents. The result showed that the structure of hemoglobin changed significantly at pH=4 with observed heme drop. Moreover, the ion mobility of the hemoglobin ions increased as the decrease of pH values, indicating the unfolding of the protein under the acidic solution conditions. By measuring the change of ion mobility, the unfolding of hemoglobin at different pH values was determined. Also the structural changes of hemoglobin ions as the change of the charge states at the same pH values were investigated and it was found that the structure of the hemoglobin became more extended as the increase of the protein charge state. In addition, it was found that the structure of the hemoglobin was also significantly affected by the type and the concentration of alcohol in the solvent. Specifically, the structure of hemoglobin in 50% methanol in water was about the same as the structure in 40% of ethanol aqueous solution. It was also found that the structure of hemoglobin collapsed in high concentration of alcohol solution, which made the structure of hemoglobin in high concentration of alcohol solution more compact.
  • 加载中
    1. [1]

      SAMUEL P P, OU W, PHILLIPS G N, OLSON J S. Biophys. J., 2017, 112(3): 59a.

    2. [2]

      WOODALL D W, BROWN C J, RAAB S A, EL-BABA T J, LAGANOWSKY A, RUSSELL D H, CLEMMER D E. Anal. Chem., 2020, 92(4): 3440-3446.

    3. [3]

      YONETANI T, PARK S I, TSUNESHIGE A, IMAI K, KANAORI K. J. Biol. Chem., 2002, 277(37): 34508-34520.

    4. [4]

      EATON W A, HENRY E R, HOFRICHTER J, BETTATI S, VIAPPIANI C, MOZZARELLI A. IUBMB Life, 2007, 59(8-9): 586-599.

    5. [5]

      BIERNAT J, KANIYAPPAN S, MEYER H E, MANDELKOW E M, WARSCHEID B, MANDELKOW E. J. Biol. Chem., 2020, 295(52): 18213-18225.

    6. [6]

      SALMAN S M, JOVCEVSKI B, MITTAL P, FATIMA B, HUSSAIN D, JABEEN F, NAEEM A M, LOUISE P T, NAJAM U H M. Microchem. J., 2020, 159: 105351-105354.

    7. [7]

      GILAD L, TAMAR Z, ORI B, ARIE A, RONALD G U, AARON C. Biochem. Biophys. Res. Commun., 2016, 475(1): 13-18.

    8. [8]

      ADAMS K J, MONTERO D, AGA D, FERNANDEZ-LIMA F. Int. J. Ion Mobility. Spectrom., 2016, 19(2-3): 69-76.

    9. [9]

      TRAN D T, BANERJEE S, ALAYASH A I, CRUMBLISS A L, FITZGERALD M C. Anal. Chem., 2012, 84(3): 1653-1660.

    10. [10]

      HOSSAIN B M, KONERMANN L. Anal. Chem., 2006, 78(5): 1613-1619.

    11. [11]

      SHELIMOV K B, JARROLD M F. J. Am. Chem. Soc., 1997, 119: 2987-2994.

    12. [12]

      STEPHEN J V, DAVID E C. J. Am. Soc. Mass Spectrom., 2002, 13(5): 506-517.

    13. [13]

      FERNANDEZ-LIMA F, BLASE R C, RUSSELL D H. Int. J. Mass Spectrom., 2010, 298(1-3): 111-118.

    14. [14]

      PREMILA P S, MARK A W, WILLIAM C O, DAVID A C, GEORGE N P, JOHN S O. Biophys. J., 2020, 118(6): 1381-1400.

    15. [15]

      WALTENSPÜHL Y, EHRENMANN J, KLENK C, PLÜCKTHUN A. Molecules, 2021, 26(5): 1465-1465.

    16. [16]

      TOM W K, JOSHUA T B, IAIN C, SARAH A H, ALISON E A. Int. J. Mass Spectrom., 2009, 298(1): 17-23.

    17. [17]

      DIXIT S M, POLASKY D A, RUOTOLO B T. Curr. Opin. Chem. Biol., 2018, 42: 93-100.

    18. [18]

      HUANG Y X, WU Z J, HUANG B T, LUO M. PLoS One, 2013, 8(11): e81708.

    19. [19]

      BUTCHER D, BERNAD S, DERRIEN V, SEBBAN P, MIKSOVSKA J, FERNANDEZ-LIMA F. Int. J. Mass Spectrom., 2018, 430: 37-43.

    20. [20]

    21. [21]

      HERNANDEZ D R, DEBORD J D, RIDGEWAY M E, KAPLAN D A, PARK M A, FERNANDEZ-LIMA F. Analyst, 2014, 139(8): 1913-1921.

    22. [22]

      WOODS L A, RADFORD S E, ASHCROFT A E. Biochim. Biophys. Acta, 2013, 1834(6): 1257-1268.

    23. [23]

      MICHELMANN K, SILVEIRA J A, RIDGEWAY M E, PARK M A. J. Am. Soc. Mass Spectrom., 2015, 26(1): 14-24.

    24. [24]

      CHAI J, XUE Y, LIU R, WANG M. Spectrochim. Acta, Part A, 2011, 79(5): 1406-1410.

    25. [25]

      LIU R, QIN P, LI W, ZHAO X, HAO X. J. Biochem. Mol. Toxicol., 2010, 24(1): 66-71.

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    3. [3]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    4. [4]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    8. [8]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    19. [19]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    20. [20]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

Metrics
  • PDF Downloads(13)
  • Abstract views(800)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return