Citation:
CHEN Xiu-Ying, GAO Bao-Xiang, ZHOU Huan-Ying. Recent Progress in Matrix for Analysis of Low Molecular Weight Compounds Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(1): 12-24.
doi:
10.19756/j.issn.0253-3820.211012
-
Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a soft ionization mass spectrometry technology and widely used in the analysis of various molecules such as proteins, polypeptides, nucleic acids and polymers, etc. However, the application of MALDI-TOF MS on detection of low molecular weight compounds (LMWC) is limited due to the matrix related peak interference and inhomogeneous crystallization of matrix/analyte. In recent years, a variety of novel matrixes have been developed for detection of LMWC. This paper reviews the matrix of MALDI-TOF MS in recent 10 years from three aspects, including new inorganic material matrix, organic compound matrix and other matrix (metal organic framework, ionic liquid matrix, reactive matrix, etc.) The research progress of determination of LMWC by MALDI-TOF MS, and the preparation, characteristics and application of matrix are introduced, and the future development trend is prospected.
-
-
-
[1]
KARAS M, HILLENKAMP F. Anal. Chem., 1988, 60(20):2299-2301.
-
[2]
DENG Z Z, YE M L, BIAN Y Y, LIU Z Y, LIU F J, WANG C L, QIN H Q, ZOU H F. Chem. Commun., 2014, 50(90):13960-13962.
-
[3]
VELIČKOVIĆ D, HERDIER H, PHILIPPE G, MARION D, ROGNIAUX H, BAKAN B. Plant J., 2014, 80:926-935.
-
[4]
LIN Z A, ZHENG J N, BIAN W, CAI Z W. Analyst, 2015, 140(15):5287-5294.
-
[5]
WEIDNER S M, FALKENHAGEN J. Rapid Commun. Mass Spectrom., 2009, 23(5):653-660.
-
[6]
CHEN S M, ZHENG H Z, WANG J N, HOU J, HE Q, LIU H H, XIONG C Q, KONG X L, NIE Z X. Anal. Chem., 2013, 85(14):6646-6652.
-
[7]
WANG S H, NIU H Y, ZENG T, ZHANG X L, GAO D, CAI Y Q. Microporous Mesoporous Mater., 2017, 239:390-395.
-
[8]
LI X H, WU X, KIM J M, KIM S S, JIN M S, LI D H. J. Am. Soc. Mass Spectrom., 2009, 20(11):2167-2173.
-
[9]
LI X, TAN J, YU J K, FENG J D, PAN A W, ZHENG S, WU J M. Anal. Chim. Acta, 2014, 849:27-35.
-
[10]
STOLEE J A, WALKER B N, ZORBA V, RUSSO R E, VERTES A. Phys. Chem. Chem. Phys., 2012, 14(24):8453-8471.
-
[11]
KAWASAKI H, YAO T, SUGANUMA T, OKUMURA K, IWAKI Y, YONEZAWA T, KIKUCHI T, ARAKAWA R. Chem.-Eur. J., 2010, 16(35):10832-10843.
-
[12]
SAYED S Y, DALY B, BURIAK J M. J. Phys. Chem. C, 2018, 112(32):12291-12298.
-
[13]
COFFINIER Y, JANEL S, ADDAD A, BLOSSEY R, GENGEMBRE L, PAYEN E, BOUKHERROUB R. Langmuir, 2007, 23(4):1608-1611.
-
[14]
DANIELS R H, DIKLER S, LI E, STACEY C. J. Assoc. Lab Autom., 2008, 13(6):314-321.
-
[15]
LIU Z, ZHANG P, KISTER T, KRAUS T, VOLME D A. J. Am. Soc. Mass Spectrom., 2020, 31(1):47-57.
-
[16]
SILINA Y E, MEIER F, NEBOLSIN V A, KOCH M, VOLMER D A. J. Am. Soc. Mass Spectrom., 2014,25(5):841-851.
-
[17]
CHEN Y S, DING J, HE X M, XU J, FENG Y Q. Microchim. Acta, 2018, 185(8):368.
-
[18]
ZHAO Y J, TANG M M, LIAO Q B, LI Z M, LI H, XI K, TAN L, ZHANG M, XU D K, Chem H Y. ACS Sens., 2018, 3(4):806-814.
-
[19]
TANG H Z, MA Y L, LIU F, LIU F, LIU Z W, LI J W, ZHOU H Y, GAO Z X. Int. J. Mass Spectrom., 2017, 417:34-39.
-
[20]
-
[21]
HAMDI A, ENJALBAL C, DROBECQ H, BOUKHERROUB R, MELNYK O, EZZAOUIA H, COFFINIER Y. Rapid Commun. Mass Spectrom., 2019, 33(S1):66-74.
-
[22]
WANG J, JIE M S, LI H F, LIN L Y, HE Z Y, WANG S Q, LIN J M. Talanta, 2017, 168:222-229.
-
[23]
GAN J R, WEI X, LI Y X, WU J, QIAN K, LIU B H. Nanomedicine, 2015, 11(7):1715-1723.
-
[24]
DONG X L, CHENG J S, LI J H, WANG Y S. Anal. Chem., 2010, 82(14):6208-6214.
-
[25]
LIN Z A, ZHENG J N, LIN G, TANG Z, YANG X Q, CAI Z W. Anal. Chem., 2015, 87(15):8005-8012.
-
[26]
ABDELHAMID H N, WU B S, WU H F. Talanta, 2014, 126:27-37.
-
[27]
ZHAO H F, LI Y Q, WANG J, CHENG M, ZHAO Z, ZHANG H N, WANG C W, WANG J Y, QIAO Y, WANG J Z. ACS Appl. Mater. Interfaces, 2018, 10(43):37732-37742.
-
[28]
YUGE R, ICHIHASHI T, SHIMAKAWA Y, KUBO Y, YUDASAKA M, IIJIMA S. Adv. Mater., 2004, 16(16):1420-1423.
-
[29]
ZHANG M F, YAMAGUCHI T, IIJIMA S, YUDASAKA M. J. Phys. Chem. C, 2009, 113(26):11184-11186.
-
[30]
URITA K, SEKI S, UTSUMI S, NOGUCHI D, KANOH H, TANAKA H, HATTORI Y, OCHIAI Y, AOKI N, YUDASAKA M, IIJIMA S, KANEKO K. Nano Lett., 2006, 6(7):1325-1328.
-
[31]
ROTAS G, SANDANAAYAKA A S D, TAGMATARCHIS N, ICHIHASHI T, YUDASAKA M, IIJIMA S, ITO O. J. Am. Chem. Soc., 2008, 130(14):4725-4731.
-
[32]
ZHANG J, LEI J P, XU C L, DING L, JU H X. Anal. Chem., 2010, 82(3):1117-1122.
-
[33]
MA R, LU M H, DING L, JU H X, CAI Z W. Chem.-Eur. J., 2013, 19(1):102-108.
-
[34]
BAKER S N, BAKER G A. Angew. Chem., Int. Ed., 2010, 49(38):6726-6744.
-
[35]
LIN Z A, WU J, DONG Y Q, XIE P S, ZHANG Y H, CAI Z W. Anal. Chem., 2018, 90(18):10872-10880.
-
[36]
KHAN M S, BHAISARE M L, PANDEY S, TALIB A, WU S M, KAILASAS K, WU H F. Int. J. Mass Spectrom., 2015, 393:25-33.
-
[37]
LI X, XU G J, ZHANG H Y, LIU S J, NIU H, PENG J X, WU J, WU R A. Carbon, 2017, 121:343-352.
-
[38]
WANG J N, SUN J, WANG J Y, LIU H H, XUE J J, NIE Z X. Chem. Commun., 2017, 53(58):8114-8117.
-
[39]
MA Y R, ZHANG X L, ZENG T, GAO D, ZHOU Z, LI W H, NIU H Y, CAI Y Q. ACS Appl. Mater. Interfaces, 2013, 5(3):1024-1030.
-
[40]
WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399:243-246.
-
[41]
PETERSON D S. Mass Spectrom. Rev., 2007, 26:19-34.
-
[42]
RAINER M, QURESHI M N, BONN G K. Anal. Bioanal. Chem., 2010, 400:2281-2288.
-
[43]
LI Y, SHRESTHA B, VERTES A. Anal. Chem., 2007, 79(2):523-532.
-
[44]
LORKIEWICZ P, YAPPERT M C. Anal. Chem., 2009, 81(16):6596-6603.
-
[45]
KINUMI T, SAISU T, TAKAYAMA M, NIWA H J. Mass Spectrom., 2000, 35:417-422.
-
[46]
WEN X J, DAGAN S, WYSOCKI V H. Anal. Chem., 2007, 79(2):434-444.
-
[47]
PARK K H, KIM H J. Rapid Commun. Mass Spectrom., 2001, 15(16):1494-1499.
-
[48]
CHA S W, YEUNG E S. Anal. Chem., 2007, 79(6):2373-2385.
-
[49]
XU S Y, LI Y F, ZOU H F, QIU J S, GUO Z, GUO B C. Anal. Chem., 2003, 75(22):6191-6195.
-
[50]
PAN C S, XU S Y, HU L G, SU X Y, OU J J, ZOU H F, GUO Z, ZHANG Y, GUO B C. J. Am. Soc. Mass Spectrom., 2005,16(6):883-892.
-
[51]
SHIEA J T, HUANG J P, TENG C F, JENG J Y, WANG L Y, CHIANG L Y. Anal. Chem., 2003, 75(14):3587-3595.
-
[52]
DONG X L, CHENG J S, LI J H, WANG Y S. Anal. Chem., 2010, 82(14):6208-6214.
-
[53]
LU M H, LAI Y Q, CHEN G N, CAI Z W. Anal. Chem., 2011, 83(8):3161-3169.
-
[54]
ANNESLEY T M. Clin. Chem., 2003, 49(7):1041-1044.
-
[55]
SHINOHARAH Y, FURUKAWA J I, NIIKURA K, MIURA N, NISHIMURA S I. Anal. Chem., 2004, 76(23):6989-6997.
-
[56]
WANG J, WANG Y W, GU J K. Mol. Cell. Proteomics, 2004, 3(10):S142.
-
[57]
CAPRIOLI R M, FARMER T B, GILLE J. Anal. Chem., 1997, 69(23):4751-4760.
-
[58]
REYZER M L, APRIOLI R M. Curr. Opin. Chem. Biol., 2007, 11(1):29-35.
-
[59]
CERRUTI C D, BENABDELLAH F, LAPREVOTE O, TOUBOUL D, BRUNELLE A. Anal. Chem., 2012,84(5):2164-2171.
-
[60]
SHROFF R, RULISEK L, DOUBSKY J, SVATOS A. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:10092-10096.
-
[61]
JASKOLLA T W, LEHMANN W D, KARAS M. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(34):12200-12205.
-
[62]
LIU H H, ZHOU Y M, WANG J Y, XIONG C Q, XUE J J, ZHAN L P, NIE Z X. Anal. Chem., 2018, 90(1):729-736.
-
[63]
CHEN S M, CHEN L, WANG J N, HOU J, HE Q, LIU J A, WANG J Y, XIONG S X, YANG G Q, NIE Z X. Anal. Chem., 2012, 84(23):10291-10297.
-
[64]
CHEN R, CHEN S M, XIONG C Q, DING X L, WU C C, CHANG H C, XIONG S X, NIE Z X. J. Am. Soc. Mass Spectrom., 2012, 23(9):1454-1460.
-
[65]
YATIM A R M, ZULKIFLI W N F W M, MAJID A M S, FOSTER J L, HAYES D G. J. Surfactants Deterg., 2020,23(3):565-571.
-
[66]
CHENG X N, YE X T, LIU D, ZHAO N, GAO H Y, WANG P, GE G B, ZHANG X Z. Rapid Commun. Mass Spectrom., 2017, 31(21):1779-1784.
-
[67]
ZHANG Y Y, GAO D, LI S F, WEI W L, LIN J S, JIAN Y Y. Anal. Methods, 2019, 11(8):1131-1136.
-
[68]
STRUPAT K, KARAS M, HILLENKAMP F. Int. J. Mass Spectrom. Ion Processes, 1991, 111:89-102.
-
[69]
TKACHOV R, KARPOV Y, SENKOVSKYY V, RAGUZIN I, ZESSIN J, LEDERE A, STAMM M, VOIT B, BAKULEV V, ZHAO W, FACCHETTI A, KIRIY A. Macromolecules, 2014, 47(12):3845-3851.
-
[70]
KARPOV Y, ZHAO W, RAGUZIN I, BERYOZKINA T, BAKULEV V, AL-HUSSEIN M, HAUBLER L, STAMM M, VOIT B, FACCHETTI A, TKACHOV R, KIRIY A. ACS Appl. Mater. Interfaces, 2015, 7(23):12478-12487.
-
[71]
HORATZ K, DITTE K, PRENVEILLE T, ZHANG K N, JEHNICHEN D, KIRIY A, VOIT B, LISSEL F. ChemPlusChem, 2019, 84(9):1338-1345.
-
[72]
HORATZ K, GIAMPA M, KARPOV Y, SAHRE K, BEDNARZ H, KIRITY A, VOIT B, NIEHAUS K, HADJICHRISTIDIS N, MICHELS D L, LISSEL F. J. Am. Chem. Soc., 2018, 140(36):11416-11423.
-
[73]
SILVA P, VILELAS M F, TOMÉ J P C, PAZ F A M. Chem. Soc. Rev., 2015, 44(19):6774-6803.
-
[74]
SHIH Y H, CHIEN C H, SINGCO B, HSU C L, LIN C H, HUANG H Y. Chem. Commun., 2013, 49(43):4929-4931.
-
[75]
FU C P, LIRIO S, LIU W L, LIN C H, HUANG H Y. Anal. Chim. Acta, 2015, 888:103-109.
-
[76]
CHEN L F, OU J J, WANG H W, LIU Z S, YE M L, ZOU H F. ACS Appl. Mater. Interfaces, 2016, 8(31):20292-20300.
-
[77]
FAN B Y, ZHOU H Y, WANG Y H, ZHAO Z Q, REN S Y, XU L, WU J, YAN H Y, GAO Z X. ACS Appl. Mater. Interfaces, 2020, 12(33):37793-37803.
-
[78]
HO T D, ZHANG C, HANTAO L W, ANDERSON J L. Anal. Chem., 2014, 86(1):262-285
-
[79]
ARMSTRONG D W, ZHANG L K, HE L F, GROSS M L. Anal. Chem., 2001, 73(15):3679-3686.
-
[80]
SHRIVAS K, TAPADIA K. J. Chromatogr. B, 2015, 1001:124-130.
-
[81]
-
[82]
ZABET-MOGHADDAM M,HEINZLE E, THOLEY A. Rapid Commun. Mass Spectrom., 2004, 18(2):141-148.
-
[83]
-
[84]
MONOPOLI A, CALVANO C D, NACCI A, PALMISANO F. Chem. Commun., 2014, 50:4322-4324.
-
[85]
SHARIATGORJI M, NILSSON A, KALLBACK P, KARLSSON O, ZHANG X Q, SVENNINGSSON P, ANDREN P E. J. Am. Soc. Mass Spectrom., 2015, 26:934-939.
-
[86]
RMANIER M L, SPRAGGINS J M, REYZER M L, NORRIS J L, CAPRIOLI R M. J. Mass Spectrom., 2014,49(8):665-673.
-
[87]
DING J, XIAO H M, LIU S M, WANG C, LIU X, FENG Y Q. Anal. Chim. Acta, 2018, 1026:77-86.
-
[88]
WU P, XIAO H M, DING J, DENG Q Y, ZHENG F, FENG Y Q. Anal. Chim. Acta, 2017, 960:90-100.
-
[89]
ZHANG S, LIU J A, CHEN Y, XIONG S X, WANG G H, CHEN J, YANG G Q. J. Am. Soc. Mass Spectrom., 2010, 21(1):154-160.
-
[1]
-
-
-
[1]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[2]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[3]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[4]
Xiaodong Chen , Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095
-
[5]
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
-
[6]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[7]
Ying Xiong , Guangao Yu , Lin Wu , Qingwen Liu , Houjin Li , Shuanglian Cai , Zhanxiang Liu , Xingwen Sun , Yuan Zheng , Jie Han , Xin Du , Chengshan Yuan , Qihan Zhang , Jianrong Zhang , Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079
-
[8]
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
-
[9]
Nan Xiao , Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099
-
[10]
Yerong Chen , Bingbin Yang , Xinglei He , Yuqi Lin , Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054
-
[11]
Qiwen Chen , Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136
-
[12]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[13]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[14]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[15]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[16]
Hanxue LIU , Shijie LI , Meng REN , Xuling XUE , Hongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031
-
[17]
Yijing GU , Huan PANG , Rongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186
-
[18]
Qi Zhang , Ziyu Liu , Hongxia Tan , Jun Tong , Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064
-
[19]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[20]
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
-
[1]
Metrics
- PDF Downloads(16)
- Abstract views(1156)
- HTML views(160)
Login In
DownLoad: