Citation: CHEN Xiu-Ying,  GAO Bao-Xiang,  ZHOU Huan-Ying. Recent Progress in Matrix for Analysis of Low Molecular Weight Compounds Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 12-24. doi: 10.19756/j.issn.0253-3820.211012 shu

Recent Progress in Matrix for Analysis of Low Molecular Weight Compounds Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

  • Corresponding author: GAO Bao-Xiang,  ZHOU Huan-Ying, 
  • Received Date: 6 January 2021
    Revised Date: 22 October 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFF0211301).

  • Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a soft ionization mass spectrometry technology and widely used in the analysis of various molecules such as proteins, polypeptides, nucleic acids and polymers, etc. However, the application of MALDI-TOF MS on detection of low molecular weight compounds (LMWC) is limited due to the matrix related peak interference and inhomogeneous crystallization of matrix/analyte. In recent years, a variety of novel matrixes have been developed for detection of LMWC. This paper reviews the matrix of MALDI-TOF MS in recent 10 years from three aspects, including new inorganic material matrix, organic compound matrix and other matrix (metal organic framework, ionic liquid matrix, reactive matrix, etc.) The research progress of determination of LMWC by MALDI-TOF MS, and the preparation, characteristics and application of matrix are introduced, and the future development trend is prospected.
  • 加载中
    1. [1]

      KARAS M, HILLENKAMP F. Anal. Chem., 1988, 60(20):2299-2301.

    2. [2]

      DENG Z Z, YE M L, BIAN Y Y, LIU Z Y, LIU F J, WANG C L, QIN H Q, ZOU H F. Chem. Commun., 2014, 50(90):13960-13962.

    3. [3]

      VELIČKOVIĆ D, HERDIER H, PHILIPPE G, MARION D, ROGNIAUX H, BAKAN B. Plant J., 2014, 80:926-935.

    4. [4]

      LIN Z A, ZHENG J N, BIAN W, CAI Z W. Analyst, 2015, 140(15):5287-5294.

    5. [5]

      WEIDNER S M, FALKENHAGEN J. Rapid Commun. Mass Spectrom., 2009, 23(5):653-660.

    6. [6]

      CHEN S M, ZHENG H Z, WANG J N, HOU J, HE Q, LIU H H, XIONG C Q, KONG X L, NIE Z X. Anal. Chem., 2013, 85(14):6646-6652.

    7. [7]

      WANG S H, NIU H Y, ZENG T, ZHANG X L, GAO D, CAI Y Q. Microporous Mesoporous Mater., 2017, 239:390-395.

    8. [8]

      LI X H, WU X, KIM J M, KIM S S, JIN M S, LI D H. J. Am. Soc. Mass Spectrom., 2009, 20(11):2167-2173.

    9. [9]

      LI X, TAN J, YU J K, FENG J D, PAN A W, ZHENG S, WU J M. Anal. Chim. Acta, 2014, 849:27-35.

    10. [10]

      STOLEE J A, WALKER B N, ZORBA V, RUSSO R E, VERTES A. Phys. Chem. Chem. Phys., 2012, 14(24):8453-8471.

    11. [11]

      KAWASAKI H, YAO T, SUGANUMA T, OKUMURA K, IWAKI Y, YONEZAWA T, KIKUCHI T, ARAKAWA R. Chem.-Eur. J., 2010, 16(35):10832-10843.

    12. [12]

      SAYED S Y, DALY B, BURIAK J M. J. Phys. Chem. C, 2018, 112(32):12291-12298.

    13. [13]

      COFFINIER Y, JANEL S, ADDAD A, BLOSSEY R, GENGEMBRE L, PAYEN E, BOUKHERROUB R. Langmuir, 2007, 23(4):1608-1611.

    14. [14]

      DANIELS R H, DIKLER S, LI E, STACEY C. J. Assoc. Lab Autom., 2008, 13(6):314-321.

    15. [15]

      LIU Z, ZHANG P, KISTER T, KRAUS T, VOLME D A. J. Am. Soc. Mass Spectrom., 2020, 31(1):47-57.

    16. [16]

      SILINA Y E, MEIER F, NEBOLSIN V A, KOCH M, VOLMER D A. J. Am. Soc. Mass Spectrom., 2014,25(5):841-851.

    17. [17]

      CHEN Y S, DING J, HE X M, XU J, FENG Y Q. Microchim. Acta, 2018, 185(8):368.

    18. [18]

      ZHAO Y J, TANG M M, LIAO Q B, LI Z M, LI H, XI K, TAN L, ZHANG M, XU D K, Chem H Y. ACS Sens., 2018, 3(4):806-814.

    19. [19]

      TANG H Z, MA Y L, LIU F, LIU F, LIU Z W, LI J W, ZHOU H Y, GAO Z X. Int. J. Mass Spectrom., 2017, 417:34-39.

    20. [20]

    21. [21]

      HAMDI A, ENJALBAL C, DROBECQ H, BOUKHERROUB R, MELNYK O, EZZAOUIA H, COFFINIER Y. Rapid Commun. Mass Spectrom., 2019, 33(S1):66-74.

    22. [22]

      WANG J, JIE M S, LI H F, LIN L Y, HE Z Y, WANG S Q, LIN J M. Talanta, 2017, 168:222-229.

    23. [23]

      GAN J R, WEI X, LI Y X, WU J, QIAN K, LIU B H. Nanomedicine, 2015, 11(7):1715-1723.

    24. [24]

      DONG X L, CHENG J S, LI J H, WANG Y S. Anal. Chem., 2010, 82(14):6208-6214.

    25. [25]

      LIN Z A, ZHENG J N, LIN G, TANG Z, YANG X Q, CAI Z W. Anal. Chem., 2015, 87(15):8005-8012.

    26. [26]

      ABDELHAMID H N, WU B S, WU H F. Talanta, 2014, 126:27-37.

    27. [27]

      ZHAO H F, LI Y Q, WANG J, CHENG M, ZHAO Z, ZHANG H N, WANG C W, WANG J Y, QIAO Y, WANG J Z. ACS Appl. Mater. Interfaces, 2018, 10(43):37732-37742.

    28. [28]

      YUGE R, ICHIHASHI T, SHIMAKAWA Y, KUBO Y, YUDASAKA M, IIJIMA S. Adv. Mater., 2004, 16(16):1420-1423.

    29. [29]

      ZHANG M F, YAMAGUCHI T, IIJIMA S, YUDASAKA M. J. Phys. Chem. C, 2009, 113(26):11184-11186.

    30. [30]

      URITA K, SEKI S, UTSUMI S, NOGUCHI D, KANOH H, TANAKA H, HATTORI Y, OCHIAI Y, AOKI N, YUDASAKA M, IIJIMA S, KANEKO K. Nano Lett., 2006, 6(7):1325-1328.

    31. [31]

      ROTAS G, SANDANAAYAKA A S D, TAGMATARCHIS N, ICHIHASHI T, YUDASAKA M, IIJIMA S, ITO O. J. Am. Chem. Soc., 2008, 130(14):4725-4731.

    32. [32]

      ZHANG J, LEI J P, XU C L, DING L, JU H X. Anal. Chem., 2010, 82(3):1117-1122.

    33. [33]

      MA R, LU M H, DING L, JU H X, CAI Z W. Chem.-Eur. J., 2013, 19(1):102-108.

    34. [34]

      BAKER S N, BAKER G A. Angew. Chem., Int. Ed., 2010, 49(38):6726-6744.

    35. [35]

      LIN Z A, WU J, DONG Y Q, XIE P S, ZHANG Y H, CAI Z W. Anal. Chem., 2018, 90(18):10872-10880.

    36. [36]

      KHAN M S, BHAISARE M L, PANDEY S, TALIB A, WU S M, KAILASAS K, WU H F. Int. J. Mass Spectrom., 2015, 393:25-33.

    37. [37]

      LI X, XU G J, ZHANG H Y, LIU S J, NIU H, PENG J X, WU J, WU R A. Carbon, 2017, 121:343-352.

    38. [38]

      WANG J N, SUN J, WANG J Y, LIU H H, XUE J J, NIE Z X. Chem. Commun., 2017, 53(58):8114-8117.

    39. [39]

      MA Y R, ZHANG X L, ZENG T, GAO D, ZHOU Z, LI W H, NIU H Y, CAI Y Q. ACS Appl. Mater. Interfaces, 2013, 5(3):1024-1030.

    40. [40]

      WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399:243-246.

    41. [41]

      PETERSON D S. Mass Spectrom. Rev., 2007, 26:19-34.

    42. [42]

      RAINER M, QURESHI M N, BONN G K. Anal. Bioanal. Chem., 2010, 400:2281-2288.

    43. [43]

      LI Y, SHRESTHA B, VERTES A. Anal. Chem., 2007, 79(2):523-532.

    44. [44]

      LORKIEWICZ P, YAPPERT M C. Anal. Chem., 2009, 81(16):6596-6603.

    45. [45]

      KINUMI T, SAISU T, TAKAYAMA M, NIWA H J. Mass Spectrom., 2000, 35:417-422.

    46. [46]

      WEN X J, DAGAN S, WYSOCKI V H. Anal. Chem., 2007, 79(2):434-444.

    47. [47]

      PARK K H, KIM H J. Rapid Commun. Mass Spectrom., 2001, 15(16):1494-1499.

    48. [48]

      CHA S W, YEUNG E S. Anal. Chem., 2007, 79(6):2373-2385.

    49. [49]

      XU S Y, LI Y F, ZOU H F, QIU J S, GUO Z, GUO B C. Anal. Chem., 2003, 75(22):6191-6195.

    50. [50]

      PAN C S, XU S Y, HU L G, SU X Y, OU J J, ZOU H F, GUO Z, ZHANG Y, GUO B C. J. Am. Soc. Mass Spectrom., 2005,16(6):883-892.

    51. [51]

      SHIEA J T, HUANG J P, TENG C F, JENG J Y, WANG L Y, CHIANG L Y. Anal. Chem., 2003, 75(14):3587-3595.

    52. [52]

      DONG X L, CHENG J S, LI J H, WANG Y S. Anal. Chem., 2010, 82(14):6208-6214.

    53. [53]

      LU M H, LAI Y Q, CHEN G N, CAI Z W. Anal. Chem., 2011, 83(8):3161-3169.

    54. [54]

      ANNESLEY T M. Clin. Chem., 2003, 49(7):1041-1044.

    55. [55]

      SHINOHARAH Y, FURUKAWA J I, NIIKURA K, MIURA N, NISHIMURA S I. Anal. Chem., 2004, 76(23):6989-6997.

    56. [56]

      WANG J, WANG Y W, GU J K. Mol. Cell. Proteomics, 2004, 3(10):S142.

    57. [57]

      CAPRIOLI R M, FARMER T B, GILLE J. Anal. Chem., 1997, 69(23):4751-4760.

    58. [58]

      REYZER M L, APRIOLI R M. Curr. Opin. Chem. Biol., 2007, 11(1):29-35.

    59. [59]

      CERRUTI C D, BENABDELLAH F, LAPREVOTE O, TOUBOUL D, BRUNELLE A. Anal. Chem., 2012,84(5):2164-2171.

    60. [60]

      SHROFF R, RULISEK L, DOUBSKY J, SVATOS A. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:10092-10096.

    61. [61]

      JASKOLLA T W, LEHMANN W D, KARAS M. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(34):12200-12205.

    62. [62]

      LIU H H, ZHOU Y M, WANG J Y, XIONG C Q, XUE J J, ZHAN L P, NIE Z X. Anal. Chem., 2018, 90(1):729-736.

    63. [63]

      CHEN S M, CHEN L, WANG J N, HOU J, HE Q, LIU J A, WANG J Y, XIONG S X, YANG G Q, NIE Z X. Anal. Chem., 2012, 84(23):10291-10297.

    64. [64]

      CHEN R, CHEN S M, XIONG C Q, DING X L, WU C C, CHANG H C, XIONG S X, NIE Z X. J. Am. Soc. Mass Spectrom., 2012, 23(9):1454-1460.

    65. [65]

      YATIM A R M, ZULKIFLI W N F W M, MAJID A M S, FOSTER J L, HAYES D G. J. Surfactants Deterg., 2020,23(3):565-571.

    66. [66]

      CHENG X N, YE X T, LIU D, ZHAO N, GAO H Y, WANG P, GE G B, ZHANG X Z. Rapid Commun. Mass Spectrom., 2017, 31(21):1779-1784.

    67. [67]

      ZHANG Y Y, GAO D, LI S F, WEI W L, LIN J S, JIAN Y Y. Anal. Methods, 2019, 11(8):1131-1136.

    68. [68]

      STRUPAT K, KARAS M, HILLENKAMP F. Int. J. Mass Spectrom. Ion Processes, 1991, 111:89-102.

    69. [69]

      TKACHOV R, KARPOV Y, SENKOVSKYY V, RAGUZIN I, ZESSIN J, LEDERE A, STAMM M, VOIT B, BAKULEV V, ZHAO W, FACCHETTI A, KIRIY A. Macromolecules, 2014, 47(12):3845-3851.

    70. [70]

      KARPOV Y, ZHAO W, RAGUZIN I, BERYOZKINA T, BAKULEV V, AL-HUSSEIN M, HAUBLER L, STAMM M, VOIT B, FACCHETTI A, TKACHOV R, KIRIY A. ACS Appl. Mater. Interfaces, 2015, 7(23):12478-12487.

    71. [71]

      HORATZ K, DITTE K, PRENVEILLE T, ZHANG K N, JEHNICHEN D, KIRIY A, VOIT B, LISSEL F. ChemPlusChem, 2019, 84(9):1338-1345.

    72. [72]

      HORATZ K, GIAMPA M, KARPOV Y, SAHRE K, BEDNARZ H, KIRITY A, VOIT B, NIEHAUS K, HADJICHRISTIDIS N, MICHELS D L, LISSEL F. J. Am. Chem. Soc., 2018, 140(36):11416-11423.

    73. [73]

      SILVA P, VILELAS M F, TOMÉ J P C, PAZ F A M. Chem. Soc. Rev., 2015, 44(19):6774-6803.

    74. [74]

      SHIH Y H, CHIEN C H, SINGCO B, HSU C L, LIN C H, HUANG H Y. Chem. Commun., 2013, 49(43):4929-4931.

    75. [75]

      FU C P, LIRIO S, LIU W L, LIN C H, HUANG H Y. Anal. Chim. Acta, 2015, 888:103-109.

    76. [76]

      CHEN L F, OU J J, WANG H W, LIU Z S, YE M L, ZOU H F. ACS Appl. Mater. Interfaces, 2016, 8(31):20292-20300.

    77. [77]

      FAN B Y, ZHOU H Y, WANG Y H, ZHAO Z Q, REN S Y, XU L, WU J, YAN H Y, GAO Z X. ACS Appl. Mater. Interfaces, 2020, 12(33):37793-37803.

    78. [78]

      HO T D, ZHANG C, HANTAO L W, ANDERSON J L. Anal. Chem., 2014, 86(1):262-285

    79. [79]

      ARMSTRONG D W, ZHANG L K, HE L F, GROSS M L. Anal. Chem., 2001, 73(15):3679-3686.

    80. [80]

      SHRIVAS K, TAPADIA K. J. Chromatogr. B, 2015, 1001:124-130.

    81. [81]

    82. [82]

      ZABET-MOGHADDAM M,HEINZLE E, THOLEY A. Rapid Commun. Mass Spectrom., 2004, 18(2):141-148.

    83. [83]

    84. [84]

      MONOPOLI A, CALVANO C D, NACCI A, PALMISANO F. Chem. Commun., 2014, 50:4322-4324.

    85. [85]

      SHARIATGORJI M, NILSSON A, KALLBACK P, KARLSSON O, ZHANG X Q, SVENNINGSSON P, ANDREN P E. J. Am. Soc. Mass Spectrom., 2015, 26:934-939.

    86. [86]

      RMANIER M L, SPRAGGINS J M, REYZER M L, NORRIS J L, CAPRIOLI R M. J. Mass Spectrom., 2014,49(8):665-673.

    87. [87]

      DING J, XIAO H M, LIU S M, WANG C, LIU X, FENG Y Q. Anal. Chim. Acta, 2018, 1026:77-86.

    88. [88]

      WU P, XIAO H M, DING J, DENG Q Y, ZHENG F, FENG Y Q. Anal. Chim. Acta, 2017, 960:90-100.

    89. [89]

      ZHANG S, LIU J A, CHEN Y, XIONG S X, WANG G H, CHEN J, YANG G Q. J. Am. Soc. Mass Spectrom., 2010, 21(1):154-160.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    18. [18]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    19. [19]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(13)
  • Abstract views(596)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return