Citation: CHEN Xiu-Ying,  GAO Bao-Xiang,  ZHOU Huan-Ying. Recent Progress in Matrix for Analysis of Low Molecular Weight Compounds Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 12-24. doi: 10.19756/j.issn.0253-3820.211012 shu

Recent Progress in Matrix for Analysis of Low Molecular Weight Compounds Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

  • Corresponding author: GAO Bao-Xiang,  ZHOU Huan-Ying, 
  • Received Date: 6 January 2021
    Revised Date: 22 October 2021

    Fund Project: Supported by the National Key Research and Development Program of China (No.2017YFF0211301).

  • Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a soft ionization mass spectrometry technology and widely used in the analysis of various molecules such as proteins, polypeptides, nucleic acids and polymers, etc. However, the application of MALDI-TOF MS on detection of low molecular weight compounds (LMWC) is limited due to the matrix related peak interference and inhomogeneous crystallization of matrix/analyte. In recent years, a variety of novel matrixes have been developed for detection of LMWC. This paper reviews the matrix of MALDI-TOF MS in recent 10 years from three aspects, including new inorganic material matrix, organic compound matrix and other matrix (metal organic framework, ionic liquid matrix, reactive matrix, etc.) The research progress of determination of LMWC by MALDI-TOF MS, and the preparation, characteristics and application of matrix are introduced, and the future development trend is prospected.
  • 加载中
    1. [1]

      KARAS M, HILLENKAMP F. Anal. Chem., 1988, 60(20):2299-2301.

    2. [2]

      DENG Z Z, YE M L, BIAN Y Y, LIU Z Y, LIU F J, WANG C L, QIN H Q, ZOU H F. Chem. Commun., 2014, 50(90):13960-13962.

    3. [3]

      VELIČKOVIĆ D, HERDIER H, PHILIPPE G, MARION D, ROGNIAUX H, BAKAN B. Plant J., 2014, 80:926-935.

    4. [4]

      LIN Z A, ZHENG J N, BIAN W, CAI Z W. Analyst, 2015, 140(15):5287-5294.

    5. [5]

      WEIDNER S M, FALKENHAGEN J. Rapid Commun. Mass Spectrom., 2009, 23(5):653-660.

    6. [6]

      CHEN S M, ZHENG H Z, WANG J N, HOU J, HE Q, LIU H H, XIONG C Q, KONG X L, NIE Z X. Anal. Chem., 2013, 85(14):6646-6652.

    7. [7]

      WANG S H, NIU H Y, ZENG T, ZHANG X L, GAO D, CAI Y Q. Microporous Mesoporous Mater., 2017, 239:390-395.

    8. [8]

      LI X H, WU X, KIM J M, KIM S S, JIN M S, LI D H. J. Am. Soc. Mass Spectrom., 2009, 20(11):2167-2173.

    9. [9]

      LI X, TAN J, YU J K, FENG J D, PAN A W, ZHENG S, WU J M. Anal. Chim. Acta, 2014, 849:27-35.

    10. [10]

      STOLEE J A, WALKER B N, ZORBA V, RUSSO R E, VERTES A. Phys. Chem. Chem. Phys., 2012, 14(24):8453-8471.

    11. [11]

      KAWASAKI H, YAO T, SUGANUMA T, OKUMURA K, IWAKI Y, YONEZAWA T, KIKUCHI T, ARAKAWA R. Chem.-Eur. J., 2010, 16(35):10832-10843.

    12. [12]

      SAYED S Y, DALY B, BURIAK J M. J. Phys. Chem. C, 2018, 112(32):12291-12298.

    13. [13]

      COFFINIER Y, JANEL S, ADDAD A, BLOSSEY R, GENGEMBRE L, PAYEN E, BOUKHERROUB R. Langmuir, 2007, 23(4):1608-1611.

    14. [14]

      DANIELS R H, DIKLER S, LI E, STACEY C. J. Assoc. Lab Autom., 2008, 13(6):314-321.

    15. [15]

      LIU Z, ZHANG P, KISTER T, KRAUS T, VOLME D A. J. Am. Soc. Mass Spectrom., 2020, 31(1):47-57.

    16. [16]

      SILINA Y E, MEIER F, NEBOLSIN V A, KOCH M, VOLMER D A. J. Am. Soc. Mass Spectrom., 2014,25(5):841-851.

    17. [17]

      CHEN Y S, DING J, HE X M, XU J, FENG Y Q. Microchim. Acta, 2018, 185(8):368.

    18. [18]

      ZHAO Y J, TANG M M, LIAO Q B, LI Z M, LI H, XI K, TAN L, ZHANG M, XU D K, Chem H Y. ACS Sens., 2018, 3(4):806-814.

    19. [19]

      TANG H Z, MA Y L, LIU F, LIU F, LIU Z W, LI J W, ZHOU H Y, GAO Z X. Int. J. Mass Spectrom., 2017, 417:34-39.

    20. [20]

    21. [21]

      HAMDI A, ENJALBAL C, DROBECQ H, BOUKHERROUB R, MELNYK O, EZZAOUIA H, COFFINIER Y. Rapid Commun. Mass Spectrom., 2019, 33(S1):66-74.

    22. [22]

      WANG J, JIE M S, LI H F, LIN L Y, HE Z Y, WANG S Q, LIN J M. Talanta, 2017, 168:222-229.

    23. [23]

      GAN J R, WEI X, LI Y X, WU J, QIAN K, LIU B H. Nanomedicine, 2015, 11(7):1715-1723.

    24. [24]

      DONG X L, CHENG J S, LI J H, WANG Y S. Anal. Chem., 2010, 82(14):6208-6214.

    25. [25]

      LIN Z A, ZHENG J N, LIN G, TANG Z, YANG X Q, CAI Z W. Anal. Chem., 2015, 87(15):8005-8012.

    26. [26]

      ABDELHAMID H N, WU B S, WU H F. Talanta, 2014, 126:27-37.

    27. [27]

      ZHAO H F, LI Y Q, WANG J, CHENG M, ZHAO Z, ZHANG H N, WANG C W, WANG J Y, QIAO Y, WANG J Z. ACS Appl. Mater. Interfaces, 2018, 10(43):37732-37742.

    28. [28]

      YUGE R, ICHIHASHI T, SHIMAKAWA Y, KUBO Y, YUDASAKA M, IIJIMA S. Adv. Mater., 2004, 16(16):1420-1423.

    29. [29]

      ZHANG M F, YAMAGUCHI T, IIJIMA S, YUDASAKA M. J. Phys. Chem. C, 2009, 113(26):11184-11186.

    30. [30]

      URITA K, SEKI S, UTSUMI S, NOGUCHI D, KANOH H, TANAKA H, HATTORI Y, OCHIAI Y, AOKI N, YUDASAKA M, IIJIMA S, KANEKO K. Nano Lett., 2006, 6(7):1325-1328.

    31. [31]

      ROTAS G, SANDANAAYAKA A S D, TAGMATARCHIS N, ICHIHASHI T, YUDASAKA M, IIJIMA S, ITO O. J. Am. Chem. Soc., 2008, 130(14):4725-4731.

    32. [32]

      ZHANG J, LEI J P, XU C L, DING L, JU H X. Anal. Chem., 2010, 82(3):1117-1122.

    33. [33]

      MA R, LU M H, DING L, JU H X, CAI Z W. Chem.-Eur. J., 2013, 19(1):102-108.

    34. [34]

      BAKER S N, BAKER G A. Angew. Chem., Int. Ed., 2010, 49(38):6726-6744.

    35. [35]

      LIN Z A, WU J, DONG Y Q, XIE P S, ZHANG Y H, CAI Z W. Anal. Chem., 2018, 90(18):10872-10880.

    36. [36]

      KHAN M S, BHAISARE M L, PANDEY S, TALIB A, WU S M, KAILASAS K, WU H F. Int. J. Mass Spectrom., 2015, 393:25-33.

    37. [37]

      LI X, XU G J, ZHANG H Y, LIU S J, NIU H, PENG J X, WU J, WU R A. Carbon, 2017, 121:343-352.

    38. [38]

      WANG J N, SUN J, WANG J Y, LIU H H, XUE J J, NIE Z X. Chem. Commun., 2017, 53(58):8114-8117.

    39. [39]

      MA Y R, ZHANG X L, ZENG T, GAO D, ZHOU Z, LI W H, NIU H Y, CAI Y Q. ACS Appl. Mater. Interfaces, 2013, 5(3):1024-1030.

    40. [40]

      WEI J, BURIAK J M, SIUZDAK G. Nature, 1999, 399:243-246.

    41. [41]

      PETERSON D S. Mass Spectrom. Rev., 2007, 26:19-34.

    42. [42]

      RAINER M, QURESHI M N, BONN G K. Anal. Bioanal. Chem., 2010, 400:2281-2288.

    43. [43]

      LI Y, SHRESTHA B, VERTES A. Anal. Chem., 2007, 79(2):523-532.

    44. [44]

      LORKIEWICZ P, YAPPERT M C. Anal. Chem., 2009, 81(16):6596-6603.

    45. [45]

      KINUMI T, SAISU T, TAKAYAMA M, NIWA H J. Mass Spectrom., 2000, 35:417-422.

    46. [46]

      WEN X J, DAGAN S, WYSOCKI V H. Anal. Chem., 2007, 79(2):434-444.

    47. [47]

      PARK K H, KIM H J. Rapid Commun. Mass Spectrom., 2001, 15(16):1494-1499.

    48. [48]

      CHA S W, YEUNG E S. Anal. Chem., 2007, 79(6):2373-2385.

    49. [49]

      XU S Y, LI Y F, ZOU H F, QIU J S, GUO Z, GUO B C. Anal. Chem., 2003, 75(22):6191-6195.

    50. [50]

      PAN C S, XU S Y, HU L G, SU X Y, OU J J, ZOU H F, GUO Z, ZHANG Y, GUO B C. J. Am. Soc. Mass Spectrom., 2005,16(6):883-892.

    51. [51]

      SHIEA J T, HUANG J P, TENG C F, JENG J Y, WANG L Y, CHIANG L Y. Anal. Chem., 2003, 75(14):3587-3595.

    52. [52]

      DONG X L, CHENG J S, LI J H, WANG Y S. Anal. Chem., 2010, 82(14):6208-6214.

    53. [53]

      LU M H, LAI Y Q, CHEN G N, CAI Z W. Anal. Chem., 2011, 83(8):3161-3169.

    54. [54]

      ANNESLEY T M. Clin. Chem., 2003, 49(7):1041-1044.

    55. [55]

      SHINOHARAH Y, FURUKAWA J I, NIIKURA K, MIURA N, NISHIMURA S I. Anal. Chem., 2004, 76(23):6989-6997.

    56. [56]

      WANG J, WANG Y W, GU J K. Mol. Cell. Proteomics, 2004, 3(10):S142.

    57. [57]

      CAPRIOLI R M, FARMER T B, GILLE J. Anal. Chem., 1997, 69(23):4751-4760.

    58. [58]

      REYZER M L, APRIOLI R M. Curr. Opin. Chem. Biol., 2007, 11(1):29-35.

    59. [59]

      CERRUTI C D, BENABDELLAH F, LAPREVOTE O, TOUBOUL D, BRUNELLE A. Anal. Chem., 2012,84(5):2164-2171.

    60. [60]

      SHROFF R, RULISEK L, DOUBSKY J, SVATOS A. Proc. Natl. Acad. Sci. U.S.A., 2009, 106:10092-10096.

    61. [61]

      JASKOLLA T W, LEHMANN W D, KARAS M. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(34):12200-12205.

    62. [62]

      LIU H H, ZHOU Y M, WANG J Y, XIONG C Q, XUE J J, ZHAN L P, NIE Z X. Anal. Chem., 2018, 90(1):729-736.

    63. [63]

      CHEN S M, CHEN L, WANG J N, HOU J, HE Q, LIU J A, WANG J Y, XIONG S X, YANG G Q, NIE Z X. Anal. Chem., 2012, 84(23):10291-10297.

    64. [64]

      CHEN R, CHEN S M, XIONG C Q, DING X L, WU C C, CHANG H C, XIONG S X, NIE Z X. J. Am. Soc. Mass Spectrom., 2012, 23(9):1454-1460.

    65. [65]

      YATIM A R M, ZULKIFLI W N F W M, MAJID A M S, FOSTER J L, HAYES D G. J. Surfactants Deterg., 2020,23(3):565-571.

    66. [66]

      CHENG X N, YE X T, LIU D, ZHAO N, GAO H Y, WANG P, GE G B, ZHANG X Z. Rapid Commun. Mass Spectrom., 2017, 31(21):1779-1784.

    67. [67]

      ZHANG Y Y, GAO D, LI S F, WEI W L, LIN J S, JIAN Y Y. Anal. Methods, 2019, 11(8):1131-1136.

    68. [68]

      STRUPAT K, KARAS M, HILLENKAMP F. Int. J. Mass Spectrom. Ion Processes, 1991, 111:89-102.

    69. [69]

      TKACHOV R, KARPOV Y, SENKOVSKYY V, RAGUZIN I, ZESSIN J, LEDERE A, STAMM M, VOIT B, BAKULEV V, ZHAO W, FACCHETTI A, KIRIY A. Macromolecules, 2014, 47(12):3845-3851.

    70. [70]

      KARPOV Y, ZHAO W, RAGUZIN I, BERYOZKINA T, BAKULEV V, AL-HUSSEIN M, HAUBLER L, STAMM M, VOIT B, FACCHETTI A, TKACHOV R, KIRIY A. ACS Appl. Mater. Interfaces, 2015, 7(23):12478-12487.

    71. [71]

      HORATZ K, DITTE K, PRENVEILLE T, ZHANG K N, JEHNICHEN D, KIRIY A, VOIT B, LISSEL F. ChemPlusChem, 2019, 84(9):1338-1345.

    72. [72]

      HORATZ K, GIAMPA M, KARPOV Y, SAHRE K, BEDNARZ H, KIRITY A, VOIT B, NIEHAUS K, HADJICHRISTIDIS N, MICHELS D L, LISSEL F. J. Am. Chem. Soc., 2018, 140(36):11416-11423.

    73. [73]

      SILVA P, VILELAS M F, TOMÉ J P C, PAZ F A M. Chem. Soc. Rev., 2015, 44(19):6774-6803.

    74. [74]

      SHIH Y H, CHIEN C H, SINGCO B, HSU C L, LIN C H, HUANG H Y. Chem. Commun., 2013, 49(43):4929-4931.

    75. [75]

      FU C P, LIRIO S, LIU W L, LIN C H, HUANG H Y. Anal. Chim. Acta, 2015, 888:103-109.

    76. [76]

      CHEN L F, OU J J, WANG H W, LIU Z S, YE M L, ZOU H F. ACS Appl. Mater. Interfaces, 2016, 8(31):20292-20300.

    77. [77]

      FAN B Y, ZHOU H Y, WANG Y H, ZHAO Z Q, REN S Y, XU L, WU J, YAN H Y, GAO Z X. ACS Appl. Mater. Interfaces, 2020, 12(33):37793-37803.

    78. [78]

      HO T D, ZHANG C, HANTAO L W, ANDERSON J L. Anal. Chem., 2014, 86(1):262-285

    79. [79]

      ARMSTRONG D W, ZHANG L K, HE L F, GROSS M L. Anal. Chem., 2001, 73(15):3679-3686.

    80. [80]

      SHRIVAS K, TAPADIA K. J. Chromatogr. B, 2015, 1001:124-130.

    81. [81]

    82. [82]

      ZABET-MOGHADDAM M,HEINZLE E, THOLEY A. Rapid Commun. Mass Spectrom., 2004, 18(2):141-148.

    83. [83]

    84. [84]

      MONOPOLI A, CALVANO C D, NACCI A, PALMISANO F. Chem. Commun., 2014, 50:4322-4324.

    85. [85]

      SHARIATGORJI M, NILSSON A, KALLBACK P, KARLSSON O, ZHANG X Q, SVENNINGSSON P, ANDREN P E. J. Am. Soc. Mass Spectrom., 2015, 26:934-939.

    86. [86]

      RMANIER M L, SPRAGGINS J M, REYZER M L, NORRIS J L, CAPRIOLI R M. J. Mass Spectrom., 2014,49(8):665-673.

    87. [87]

      DING J, XIAO H M, LIU S M, WANG C, LIU X, FENG Y Q. Anal. Chim. Acta, 2018, 1026:77-86.

    88. [88]

      WU P, XIAO H M, DING J, DENG Q Y, ZHENG F, FENG Y Q. Anal. Chim. Acta, 2017, 960:90-100.

    89. [89]

      ZHANG S, LIU J A, CHEN Y, XIONG S X, WANG G H, CHEN J, YANG G Q. J. Am. Soc. Mass Spectrom., 2010, 21(1):154-160.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    19. [19]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    20. [20]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

Metrics
  • PDF Downloads(15)
  • Abstract views(908)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return