Citation: ZOU Ying-yi,  FENG Rui-hong,  LUO Ying-xin,  MA Ming-jun,  ZHU Lu-yao,  MA Li-jun. Study on Salicylaldehyde Derivatives Modified by Naphthalene Isothiocyanate as Fluorescent Probe for Fluoride Ion[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 574-584. doi: 10.19756/j.issn.0253-3820.210878 shu

Study on Salicylaldehyde Derivatives Modified by Naphthalene Isothiocyanate as Fluorescent Probe for Fluoride Ion

  • Corresponding author: MA Li-jun, mlj898021@scnu.edu.cn
  • Received Date: 6 December 2021
    Revised Date: 7 March 2022

    Fund Project: Supported by the Natural Science Foundation of Guangdong Province,China(No. 2015A030313392)the Science and Technology Planning Project of Guangzhou,China(NO. 2018J2200342)

  • Two fluorescent molecules(1 and 2) were synthesized by salicylaldehyde and 4-(diethylamino) salicylaldehyde with naphthalene isothiocyanate.Their structures were characterized by nuclear magnetic resonance(NMR) and mass spectrometry(MS).The results of UV-vis absorption spectra and fluorescence spectra showed that molecule 1 and molecule 2 had high sensitivity to fluoride ion(F-) in DMSO solution, which could be used as fluorescence probes for F- detection.Probe 1(molecule 1) showed fluorescence enhancement to F-, and the fluorescence intensity increased by 15 times when F-concentration was 20.0μmol/L.Compared to probe 1, probe 2(molecule 2) showed high selectivity ratio fluorescence recognition for F- due to the presence of diethylamino group.The addition of F-could cause decrease of fluorescence emission peak of probe 2 at 456 nm, while a new fluorescence emission peak appeared at 503 nm and gradually increased.Probes 1 and 2 had low detection limits of 0.35μmol/L and 0.68μmol/L toward F-respectively.By the B-H equation, the constants of probe 1 and probe 2 to F- were 3.8×104 L/mol and 6.98×103 L/mol, indicating that the two probes had strong binding affinity with F-.In addition, the binding modes between probe 1 and probe 2 and F-were investigated by 1H NMR.The analysis of experimental results showed that the fluorescence recognition mechanism of both two probes was intramolecular charge transfer(ICT).Finally, the test papers prepared by the two probes were used for simple fluorescence detection of F- in toothpaste solution, which proved their good practicability.
  • 加载中
    1. [1]

      ZHOU Y, ZHANG J F, YOON J Y. Chem. Rev., 2014, 114(10):5511-5571.

    2. [2]

      ROCHA R A, ROJAS D, CLEMENTE M J, RUIZ A, DEVESA V, VELEZ D. J. Agric. Food Chem., 2013, 61(45):10708-10713.

    3. [3]

      JIA B, ZONG L, LEE J Y, LEI J, ZHU Y, XIE H, JULIA L C, MIA C F, NA Q, DONG J, MICHAEL W M,KIMBERLY J B, IRINA B. Sci. Rep., 2019, 9:2575.

    4. [4]

      SHAO F Q, ZHANG S M, QI C, WANG Y, CHEN Y. Clin. Nucl. Med., 2017, 42(9):711-713.

    5. [5]

      MOHAMMADI A A, YOUSEFI M, YASERI M, JALILZADEH M, MAHVI A H. Sci. Rep., 2017, 7:17300.

    6. [6]

      YADAV K K, KUMAR S, PHAM Q B, GUPTA N, REZANIAE S, KAMYAB H, YADAV S, VYMAZAL J,KUMAR V, TRI D Q, TALAIEKHOZANI A, PRASAD S, REECE L M, SINGH N, MSURYA P K, CHO J.Ecotoxicol. Environ. Saf., 2019, 182:109362.

    7. [7]

    8. [8]

      RICHARD A N, BEKELCHA T G, HERN K. New J. Chem., 2018, 42:12263.

    9. [9]

      IBBA F, PUPO G, THOMPSON A L, BROWN J M, CLARIDGE T D W, GOUVERNEUR V. J. Am. Chem. Soc.,2020, 142(46):19731-19744.

    10. [10]

      SHAW W M. Anal. Chem., 1954, 26(7):1212-1214.

    11. [11]

      MICHALSKI R. J. Food Qual., 2006, 29(6):607-616.

    12. [12]

      CHEN G J, PENG C Y, FANG J Y, DONG Y Y, ZHU X H, CAI H M. Desalin. Water Treat., 2016, 57(26):12385-12395.

    13. [13]

      DU M, HUO B L, LIU J M, LI M W, FANG L Q, YANG Y X. Anal. Chim. Acta, 2018, 1030:172-182.

    14. [14]

      LIU J B, WANG W H, LI G D, WANG R X, LEUNG C H, MA D L. ACS Omega, 2017, 2(12):9150-9155.

    15. [15]

      ZHENG H Y, LIAN X, QIN S J, YAN B. ACS Omega, 2018, 3(10):12513-12519.

    16. [16]

      LONG L L, HUANG M Y, WANG N, WU Y J, WANG K, GONG A H, ZHANG Z J. SESSLER J L. J. Am. Chem.Soc., 2018, 140(5):1870-1875.

    17. [17]

      LI W, GONG X Y, FAN X P, YIN S L, SU D D, ZHANG X B, YUAN L. Chin. Chem. Lett., 2019, 30(10):1775-1790.

    18. [18]

      HE X J, XIONG W, ZHANG L L, XU C C, FAN J Y, QIAN Y, WEN J S, DING F, SHEN J L. Dyes Pigm., 2020,174:108059.

    19. [19]

      CHEN S Y, YU H, ZHAO C, HU R, ZHU J, LI L. Sens. Actuators, B, 2017, 250:591-600.

    20. [20]

      ZHANG P S, WANG H, HONG Y X, YU M L, ZENG R J, LONG Y F, CHEN J. Biosens. Bioelectron., 2018, 99:318-324.

    21. [21]

      SHEN Y M, ZHANG X Y, ZHANG Y Y, LI H T, CHEN Y D. Sens. Actuators, B, 2018, 258:544-549.

    22. [22]

      WU X M, WANG H, YANG S X, TIAN H Y, LIU Y G, SUN B G. ACS Omega, 2019, 4(3):4918-4926.

    23. [23]

    24. [24]

    25. [25]

      SHARMA S, HUNDAL M S, HUNDAL G. Tetrahedron Lett., 2013, 54(19):2423-2427.

    26. [26]

      NA Y J, CHOI Y W, YUN J Y, PARK K M, CHANG P S, KIM C. Spectrochim. Acta, Part A, 2015, 136(C):1649-1657.

    27. [27]

      SARAVANA L A K, RAMALINGAM T, MPPRTHY S K, ANANDRAM S. Ind. Eng. Chem. Res., 2011, 50(22):12379-12383.

    28. [28]

      YAN G T, LI H, ZHU Y R, SHI B B, QU W J, LIN Q, YAO H, ZHANG Y M, WEI T B. New J. Chem., 2015,39(11):8797-8801.

    29. [29]

      JU B C, DONGJU Y, HANGYUL L, HYOJIN L, KI T K, CHEAL K. ACS Omega, 2019, 4(7):12537-12543.

    30. [30]

      BENESI H A,HILDEBRAND J H. J. Am. Chem. Soc., 1949, 71:2703-2707.

    31. [31]

      QIU S Y, CUI S Q, SHI F, PU S Z. ACS Omega, 2019, 4(12):14841-14848.

    32. [32]

      YUAN X, XU X J, ZHAO C X, ZHANG F, LU Y X, SHEN Y J, WANG C Y. Sens. Actuators, B, 2017, 253:1096-1105.

    33. [33]

      SU H Y, HUANG W W, YANG Z Y, LIN H, LIN H K. J. Inclusion Phenom. Macrocyclic Chem., 2012, 72(1):221-225.

    34. [34]

      KUMAR D, THOMAS K R J. RSC Adv., 2014, 4(99):56466-56474.

    35. [35]

      MAHAPATRA A K, MAITI K, SAHOO P, NANDI P K. J. Lumin., 2013, 143:349-354.

    36. [36]

      WANG Y, ZHAO Q, ZANG L B, LIANG C S, JIANG S M. Dyes Pigm., 2015, 123:166-175.

    37. [37]

  • 加载中
    1. [1]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    2. [2]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    3. [3]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    4. [4]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    9. [9]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    10. [10]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    11. [11]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    12. [12]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    13. [13]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    14. [14]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    15. [15]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(11)
  • Abstract views(645)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return