Citation: ZOU Ying-yi,  FENG Rui-hong,  LUO Ying-xin,  MA Ming-jun,  ZHU Lu-yao,  MA Li-jun. Study on Salicylaldehyde Derivatives Modified by Naphthalene Isothiocyanate as Fluorescent Probe for Fluoride Ion[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 574-584. doi: 10.19756/j.issn.0253-3820.210878 shu

Study on Salicylaldehyde Derivatives Modified by Naphthalene Isothiocyanate as Fluorescent Probe for Fluoride Ion

  • Corresponding author: MA Li-jun, mlj898021@scnu.edu.cn
  • Received Date: 6 December 2021
    Revised Date: 7 March 2022

    Fund Project: Supported by the Natural Science Foundation of Guangdong Province,China(No. 2015A030313392)the Science and Technology Planning Project of Guangzhou,China(NO. 2018J2200342)

  • Two fluorescent molecules(1 and 2) were synthesized by salicylaldehyde and 4-(diethylamino) salicylaldehyde with naphthalene isothiocyanate.Their structures were characterized by nuclear magnetic resonance(NMR) and mass spectrometry(MS).The results of UV-vis absorption spectra and fluorescence spectra showed that molecule 1 and molecule 2 had high sensitivity to fluoride ion(F-) in DMSO solution, which could be used as fluorescence probes for F- detection.Probe 1(molecule 1) showed fluorescence enhancement to F-, and the fluorescence intensity increased by 15 times when F-concentration was 20.0μmol/L.Compared to probe 1, probe 2(molecule 2) showed high selectivity ratio fluorescence recognition for F- due to the presence of diethylamino group.The addition of F-could cause decrease of fluorescence emission peak of probe 2 at 456 nm, while a new fluorescence emission peak appeared at 503 nm and gradually increased.Probes 1 and 2 had low detection limits of 0.35μmol/L and 0.68μmol/L toward F-respectively.By the B-H equation, the constants of probe 1 and probe 2 to F- were 3.8×104 L/mol and 6.98×103 L/mol, indicating that the two probes had strong binding affinity with F-.In addition, the binding modes between probe 1 and probe 2 and F-were investigated by 1H NMR.The analysis of experimental results showed that the fluorescence recognition mechanism of both two probes was intramolecular charge transfer(ICT).Finally, the test papers prepared by the two probes were used for simple fluorescence detection of F- in toothpaste solution, which proved their good practicability.
  • 加载中
    1. [1]

      ZHOU Y, ZHANG J F, YOON J Y. Chem. Rev., 2014, 114(10):5511-5571.

    2. [2]

      ROCHA R A, ROJAS D, CLEMENTE M J, RUIZ A, DEVESA V, VELEZ D. J. Agric. Food Chem., 2013, 61(45):10708-10713.

    3. [3]

      JIA B, ZONG L, LEE J Y, LEI J, ZHU Y, XIE H, JULIA L C, MIA C F, NA Q, DONG J, MICHAEL W M,KIMBERLY J B, IRINA B. Sci. Rep., 2019, 9:2575.

    4. [4]

      SHAO F Q, ZHANG S M, QI C, WANG Y, CHEN Y. Clin. Nucl. Med., 2017, 42(9):711-713.

    5. [5]

      MOHAMMADI A A, YOUSEFI M, YASERI M, JALILZADEH M, MAHVI A H. Sci. Rep., 2017, 7:17300.

    6. [6]

      YADAV K K, KUMAR S, PHAM Q B, GUPTA N, REZANIAE S, KAMYAB H, YADAV S, VYMAZAL J,KUMAR V, TRI D Q, TALAIEKHOZANI A, PRASAD S, REECE L M, SINGH N, MSURYA P K, CHO J.Ecotoxicol. Environ. Saf., 2019, 182:109362.

    7. [7]

    8. [8]

      RICHARD A N, BEKELCHA T G, HERN K. New J. Chem., 2018, 42:12263.

    9. [9]

      IBBA F, PUPO G, THOMPSON A L, BROWN J M, CLARIDGE T D W, GOUVERNEUR V. J. Am. Chem. Soc.,2020, 142(46):19731-19744.

    10. [10]

      SHAW W M. Anal. Chem., 1954, 26(7):1212-1214.

    11. [11]

      MICHALSKI R. J. Food Qual., 2006, 29(6):607-616.

    12. [12]

      CHEN G J, PENG C Y, FANG J Y, DONG Y Y, ZHU X H, CAI H M. Desalin. Water Treat., 2016, 57(26):12385-12395.

    13. [13]

      DU M, HUO B L, LIU J M, LI M W, FANG L Q, YANG Y X. Anal. Chim. Acta, 2018, 1030:172-182.

    14. [14]

      LIU J B, WANG W H, LI G D, WANG R X, LEUNG C H, MA D L. ACS Omega, 2017, 2(12):9150-9155.

    15. [15]

      ZHENG H Y, LIAN X, QIN S J, YAN B. ACS Omega, 2018, 3(10):12513-12519.

    16. [16]

      LONG L L, HUANG M Y, WANG N, WU Y J, WANG K, GONG A H, ZHANG Z J. SESSLER J L. J. Am. Chem.Soc., 2018, 140(5):1870-1875.

    17. [17]

      LI W, GONG X Y, FAN X P, YIN S L, SU D D, ZHANG X B, YUAN L. Chin. Chem. Lett., 2019, 30(10):1775-1790.

    18. [18]

      HE X J, XIONG W, ZHANG L L, XU C C, FAN J Y, QIAN Y, WEN J S, DING F, SHEN J L. Dyes Pigm., 2020,174:108059.

    19. [19]

      CHEN S Y, YU H, ZHAO C, HU R, ZHU J, LI L. Sens. Actuators, B, 2017, 250:591-600.

    20. [20]

      ZHANG P S, WANG H, HONG Y X, YU M L, ZENG R J, LONG Y F, CHEN J. Biosens. Bioelectron., 2018, 99:318-324.

    21. [21]

      SHEN Y M, ZHANG X Y, ZHANG Y Y, LI H T, CHEN Y D. Sens. Actuators, B, 2018, 258:544-549.

    22. [22]

      WU X M, WANG H, YANG S X, TIAN H Y, LIU Y G, SUN B G. ACS Omega, 2019, 4(3):4918-4926.

    23. [23]

    24. [24]

    25. [25]

      SHARMA S, HUNDAL M S, HUNDAL G. Tetrahedron Lett., 2013, 54(19):2423-2427.

    26. [26]

      NA Y J, CHOI Y W, YUN J Y, PARK K M, CHANG P S, KIM C. Spectrochim. Acta, Part A, 2015, 136(C):1649-1657.

    27. [27]

      SARAVANA L A K, RAMALINGAM T, MPPRTHY S K, ANANDRAM S. Ind. Eng. Chem. Res., 2011, 50(22):12379-12383.

    28. [28]

      YAN G T, LI H, ZHU Y R, SHI B B, QU W J, LIN Q, YAO H, ZHANG Y M, WEI T B. New J. Chem., 2015,39(11):8797-8801.

    29. [29]

      JU B C, DONGJU Y, HANGYUL L, HYOJIN L, KI T K, CHEAL K. ACS Omega, 2019, 4(7):12537-12543.

    30. [30]

      BENESI H A,HILDEBRAND J H. J. Am. Chem. Soc., 1949, 71:2703-2707.

    31. [31]

      QIU S Y, CUI S Q, SHI F, PU S Z. ACS Omega, 2019, 4(12):14841-14848.

    32. [32]

      YUAN X, XU X J, ZHAO C X, ZHANG F, LU Y X, SHEN Y J, WANG C Y. Sens. Actuators, B, 2017, 253:1096-1105.

    33. [33]

      SU H Y, HUANG W W, YANG Z Y, LIN H, LIN H K. J. Inclusion Phenom. Macrocyclic Chem., 2012, 72(1):221-225.

    34. [34]

      KUMAR D, THOMAS K R J. RSC Adv., 2014, 4(99):56466-56474.

    35. [35]

      MAHAPATRA A K, MAITI K, SAHOO P, NANDI P K. J. Lumin., 2013, 143:349-354.

    36. [36]

      WANG Y, ZHAO Q, ZANG L B, LIANG C S, JIANG S M. Dyes Pigm., 2015, 123:166-175.

    37. [37]

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    11. [11]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    16. [16]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(11)
  • Abstract views(465)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return