Citation: SONG Hui-jia,  ZHANG Hai-pin,  ZHANG Pei,  WANG Chao-feng,  DOU Xiao-jie,  CHEN Xiao-yi,  GAO Rui-xia. Construction of Functionalized Magnetic Molecularly Imprinted Nano-platform and Its Performance in Local Castration Therapy[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 602-612. doi: 10.19756/j.issn.0253-3820.210832 shu

Construction of Functionalized Magnetic Molecularly Imprinted Nano-platform and Its Performance in Local Castration Therapy

  • Corresponding author: GAO Rui-xia, ruixiagao@xjtu.edu.cn
  • Received Date: 10 November 2021
    Revised Date: 6 March 2022

    Fund Project: Supported by the Natural Science Foundation of Shaanxi Province,China(Nos. 2020JM-066, 2020JQ-019)

  • The current clinical castration treatment drugs for prostate cancer are mainly focus on the reduction of systemic androgen or blocking their binding to androgen receptor(AR). However, due to the complexity of signal pathway activation, developing new castration methods to achieve selective removal of androgen from local tissues of prostate cancer is of great significance to enhance the therapeutic effect and reduce systemic side effects. In this work, 3-aminopropyltriethoxysilane(APTES) and octylmethoxysilane(OTMS) were used to modify magnetic nanoparticles to prepare amphiphilic nanoparticles(AO-MNPs). The prepared AO-MNPs enhanced the affinity of carriers towards template testosterone(TSTO), benefiting from the function of the amino and hydrophobic alkyl chain. And then, AO-MNPs was used as the core, TSTO as the template molecule, and dopamine(DA) as the functional monomer to prepared superparamagnetic core-shell testosterone magnetic molecularly imprinted polymers(T/AO-MMIPs) by a two-step template immobilization method. The strategy of two-step immobilization template method not only synergistically enhanced the affinity of the imprinted holes for TSTO, but also made the imprinted holes well arranged in an orderly and regular distribution on the surface of the carrier. Thus, the fabricated T/AO-MMIPs were evaluated to possess high adsorption amount and good selectivity, which played an important role in the selective removal of specific biomolecules from complex biological tissues. When T/AO-MMIPs were taken up by prostate cancer tissue through EPR, they could selectively adsorb the inter TSTO molecules in cells, thereby blocking the combination of TSTO and AR, inhibiting AR activity and exerting prostate cancer tumor growth inhibitory effect, while no obvious effect on normal cells. The as-prepared T/AO-MMIPs nanoplatform provided a new research strategy for enhancing the treatment of prostate cancer castration.
  • 加载中
    1. [1]

      SIEGEL R L, MILLER K D, FUCHS H E, JEMAL A. Ca-Cancer J. Clin., 2021, 71(1):7-33.

    2. [2]

      HUGGINS C, HODGES C V. Cancer Res., 1941, 1(4):293-297.

    3. [3]

    4. [4]

      GAO X M, DAI C, HUANG S S, TANG J J, CHEN G Y, LI J N, ZHU Z Q, ZHU X Y, ZHOU S R, GAO Y Y, HOU Z M,FANG Z J, XU C D, WANG J Y, WU D L, SHARIFI N, LI Z F. Clin. Cancer Res., 2019, 25(4):1291-1301.

    5. [5]

    6. [6]

      KANDIL S, LEE K Y, DAVIES L, RIZZO S A, DART D A, WESTWELL A D. Eur. J. Med. Chem., 2019, 167:49-60.

    7. [7]

      HU J C, WILLIAMS S B, O’MALLEY A J, SMITH M R, NGUYEN P L, KEATING N L. Eur. Urol., 2012, 61(6):1119-1128.

    8. [8]

      XU S X, WANG L S, LIU Z. Angew. Chem., Int. Ed., 2021, 60(7):3858-3869.

    9. [9]

    10. [10]

      DONG Y R, LI W, GU Z K, XING R R, MA Y Y, ZHANG Q, LIU Z. Angew. Chem., Int., Ed., 2019(31), 58:10621-10625.

    11. [11]

      HORIKAWA R, SUNAYAMA H, KITAYAMA Y, TAKANO E, TAKEUCHI T. Angew. Chem., Int. Ed., 2016,55(42):13023-13027.

    12. [12]

    13. [13]

      PANAGIOTOPOULOU M, SALINAS Y, BEYAZIT S, KUNATH S, DUMA L, PROST E, MAYES A G, RESMINI M,TSESUMBUI B, HAUPT K. Angew. Chem., Int. Ed., 2016, 55(29):8244-8248.

    14. [14]

      SONG H J, ZHANG H P, HE Y L, GAO R X, WANG Y, WANG W T, PFEFFERLE L D, TANG X S, TANG Y H. Food Chem., 2021, 356:129722.

    15. [15]

      WANG D Q, ZHANG N, JING X N, ZHANG Y, XU Y Z, MENG L J. J. Mater. Chem. B, 2020, 8(36):8271-8281.

    16. [16]

      ZHANG Y, WANG X Y, CHU C C, ZHOU Z J, CHEN B Q, PANG X, LIN G, LIN H R, GUO Y X, REN E, LV P, SHI Y S,ZHENG Q B, YAN X H, CHEN X Y, LIU G. Nat. Commun., 2020, 11(1):5421.

    17. [17]

      DADFAR S M, ROEMHILD K, DRUDE N I, VON STILLFRIED S, KNÜCHEL R, KIESSLING F, LAMMERS T.Adv. Drug Deliver. Rev., 2019, 138:302-325.

    18. [18]

      ZHOU T Y, WANG Y B, LI T T, LI H J, YANG C W, SUN D S, WANG D D, LIU C B, CHE G B. Chem. Eng. J., 2021,420(1):129904.

    19. [19]

      GAO L Y, TANG Y H, WANG C F, YAO L, ZHANG J J, GAO R X, TANG X S, CHONG T, ZHANG H. J. Colloid Interf. Sci., 2019, 552:142-152.

    20. [20]

      GAO R X, KONG X, WANG X, HE X W, CHEN L X, ZHANG Y K. J. Mater. Chem., 2011, 21(44):17863-17871.

    21. [21]

      KONG X, GAO R X, HE X W, CHEN L X, ZHANG Y K. J. Chromatogr. A, 2012, 1245:8-16.

    22. [22]

    23. [23]

      SUN Y L. J. Chem. Sci., 2014, 126(4):1005-1011.

    24. [24]

      HE Y L, FISHMAN Z S, YANG K R, ORTIZ B, LIU C L, GOLDSAMT J, BATISTA V S, PFEFFERLE L D. J. Am.Chem. Soc., 2018, 140(5):1824-1833.

    25. [25]

    26. [26]

    27. [27]

      WANG Y, ZHAO W C, GAO R X, HUSSAIN S, HAO Y, TIAN J H, CHEN S H, FENG Y H, ZHAO Y B, QU Y Y. J.Hazard. Mater., 2022, 424(A):127216.

    28. [28]

    29. [29]

      HAO Y, GAO Y, SONG H J, NIU Y, CHEN X Y, LIU X Y, GAO R X, WANG S C. Talanta, 2021, 233:122496.

    30. [30]

      XUE C C, LI M H, ZHAO Y, ZHOU J, HU Y, CAI K Y, ZHAO Y, YU S H, LUO Z. Sci. Adv., 2020, 6(18):eaax1346.

    31. [31]

      TANG X S, LI F, JIA J, YANG C, LIU W, JIN B, WANG X Y, GAO R X, HE D L, GUO P. Int. J. Nanomed., 2017,12:2979-2993.

    32. [32]

      CHUU C P, KOKPNTIS J M, HIIPAKKA R A, FUKUCHI J, LIN H P, LIN C Y, HUO C, SU L C. J. Biomed. Sci.,2011, 18:63.

  • 加载中
    1. [1]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    14. [14]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    15. [15]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    16. [16]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    17. [17]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    18. [18]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    19. [19]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

Metrics
  • PDF Downloads(10)
  • Abstract views(464)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return