Citation: WANG Bo,  ZHANG Xu-Dong,  KANG Ge,  LIU Fang-Ning,  ZHAO Dan,  CHEN Chuan-Xia,  LU Yi-Zhong. Colorimetric Detection of Alkaline Phosphatase Activity Based on Manganese Single Atom Nanozyme[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 54-63. doi: 10.19756/j.issn.0253-3820.210812 shu

Colorimetric Detection of Alkaline Phosphatase Activity Based on Manganese Single Atom Nanozyme

  • Corresponding author: ZHAO Dan,  CHEN Chuan-Xia, 
  • Received Date: 26 October 2021
    Revised Date: 24 November 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21902061, 22104046, 21904048, 22172063) and the Natural Science Foundation of Shandong Province, China (Nos.ZR2020QB033, ZR2019YQ10).

  • Manganese (Mn) single atom nanozyme with peroxidase-like activity was synthesized through a solvothermal method and used for the detection of alkaline phosphatase (ALP) activity. By using formamide as the carbon and nitrogen source and MnCl2 as the Mn source, formamide converted Mn and nitroren co-doped carbon (f-MnNC) could be obtained after reacting at 180℃ for 12 h. The structure and morphology were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, etc., and the peroxidase-like activity was investigated mainly using UV-visible absorption spectroscopy. In the presence of H2O2, f-MnNC could catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB), with a characteristic absorption peak centered at 652 nm. ALP could catalyze the hydrolysis of L-ascorbic acid-2-phosphate (AA2P) to produce ascorbic acid (AA), which then reduced oxTMB to TMB, resulting in faded color and decreased absorbance. The degree of colorimetric signal change was related to ALP activity, and thus ALP activity could be quantitatively detected by employing AA2P as the substrate. In the activity range of 0.1-10 mU/mL, there was a good linear relationship between the absorbance at 652 nm and the ALP activity, and the detection limit (S/N=3) was 0.059 mU/mL. Other proteins and enzymes had no obvious interference with ALP detection, indicating good selectivity for ALP activity detection. The method was successfully applied to the determination of ALP activity in serum with satisfactory results.
  • 加载中
    1. [1]

      MILLÁN J L. Purinerg. Signal., 2006, 2(2):335.

    2. [2]

      FERNANDEZ N J, KIDNEY B A. Vet. Clin. Path., 2007, 36(3):223-233.

    3. [3]

      GOGGINS S, NAZ C, MARSH B J, FROST C G. Chem. Commun., 2015, 51(3):561-564.

    4. [4]

      KREUZER M P, O'SULLIVAN C K, GUILBAULT G G. Anal. Chim. Acta, 1999, 393(1):95-102.

    5. [5]

      BLUM J S, LI R H, MIKOS A G, BARRY M A. J. Cell Biochem., 2001, 80(4):532-537.

    6. [6]

      HASEGAWA T, SUGITA M, TAKATANI K, MATSUURA H, UMEMURA T, HARAGUCHI H. Bull. Chem. Soc. Jpn., 2006, 79(8):1211-1214.

    7. [7]

      RUAN C M, WANG W, GU B H. Anal. Chem., 2006, 78(10):3379-3384.

    8. [8]

      WEI H, CHEN C G, HAN B Y, WANG E K. Anal. Chem., 2008, 80(18):7051-7055.

    9. [9]

      CHEN C X, ZHAO D, JIANG Y Y, NI P J, ZHANG C H, WANG B, YANG F, LU Y Z, SUN J. Anal. Chem., 2019, 91(23):15017-15024.

    10. [10]

      ZHAO W, CHIUMAN W, LAM J C, BROOK M A, LI Y. Chem. Commun., 2007, 43(36):3729-3731.

    11. [11]

      SUN J, ZHAO J, BAO X, WANG Q, YANG X. Anal. Chem., 2018, 90(10):6339-6345.

    12. [12]

      CHEN C X, ZHANG G L, NI P J, JIANG Y Y, LU Y Z, LU Z L. Microchim. Acta, 2019, 186(6):348.

    13. [13]

      XIANYU Y L, WANG Z, JIANG X Y. ACS Nano, 2014, 8(12):12741-12747.

    14. [14]

      CHEN C X, YUAN Q, NI P J, JIANG Y Y, ZHAO Z L, LU Y Z. Analyst, 2018, 143(16):3821-3828.

    15. [15]

      MA J L, YIN B C, WU X, YE B C. Anal. Chem., 2016, 88(18):9219-9225.

    16. [16]

      CHEN C X, ZHAO J H, LU Y Z, SUN J, YANG X R. Anal. Chem., 2018, 90(5):3505-3511.

    17. [17]

      KIM T I, KIM H, CHOI Y, KIM Y. Chem. Commun., 2011, 47(35):9825-9827.

    18. [18]

      CHEN C X, ZHAO D, WANG B, NI P J, JIANG Y Y, ZHANG C H, YANG F, LU Y Z, SUN J. Anal. Chem., 2020, 92(6):4639-4646.

    19. [19]

      SUN J, HU T, CHEN C X, ZHAO D, YANG F, YANG X R. Anal. Chem., 2016, 88(19):9789-9795.

    20. [20]

      ZHAO D, LI J, PENG C Y, ZHU S Y, SUN J, YANG X R. Anal. Chem., 2019, 91(4):2978-2984.

    21. [21]

      MALASHIKHINA N, GARAI-IBABE G, PAVLOV V. Anal. Chem., 2013, 85(14):6866-6870.

    22. [22]

      BABSON A L, GREELEY S J, COLEMAN C M, PHILLIPS G E. Clin. Chem., 1966, 12(8):482-490.

    23. [23]

    24. [24]

      YANG X, GAO Z. Chem. Commun., 2015, 51(32):6928-6931.

    25. [25]

      WANG C, GAO J, CAO Y, TAN H. Anal. Chim. Acta, 2018, 1004:74-81.

    26. [26]

      SONG H, YE K, PENG Y, WANG L, NIU X. J. Mater. Chem. B, 2019, 7(38):5834-5841.

    27. [27]

      TIAN F, ZHOU J, MA J, LIU S, JIAO B, HE Y. Microchim. Acta, 2019, 186(7):408.

    28. [28]

      JIAO L, YAN H, WU Y, GU W, ZHU C, DU D, LIN Y. Angew. Chem., Int. Ed., 2020, 59(7):2565-2576.

    29. [29]

      HAN L, ZHANG H, CHEN D, LI F. Adv. Funct. Mater., 2018, 28(17):1800018.

    30. [30]

    31. [31]

      ZHANG G, JIA Y, ZHANG C, XIONG X, SUN K, CHEN R, CHEN W, KUANG Y, ZHENG L, TANG H, LIU W, LIU J, SUN X, LIN W F, DAI H. Energy Environ. Sci., 2019, 12(4):1317-1325.

    32. [32]

      GONG Z, YANG B, LIN H, TANG Y, TANG Z, ZHANG J, ZHANG H, LI Y, XIE Y, LI Q, CHI L. ACS Nano, 2016, 10(4):4228-4235.

    33. [33]

      CHEN Z, MITCHELL S, VOROBYEVA E, LEARY R K, HAUERT R, FURNIVAL T, RAMASSE Q M, THOMAS J M, MIDGLEY P A, DONTSOVA D, ANTONIETTI M, POGODIN S, LÓPEZ N, PÉREZ-RAMÍREZ J. Adv. Funct. Mater., 2017, 27(8):1605785.

    34. [34]

      JIANG B, DUAN D, GAO L, ZHOU M, FAN K, TANG Y, XI J, BI Y, TONG Z, GAO G F, XIE N, TANG A, NIE G, LIANG M, YAN X. Nat. Protoc., 2018, 13(7):1506-1520.

    35. [35]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    36. [36]

      QIAO F, CHEN L, LI X, LI L, AI S. Sens. Actuators, B, 2014, 193:255-262.

    37. [37]

      XU W, JIAO L, YAN H, WU Y, CHEN L, GU W, DU D, LIN Y, ZHU C. ACS Appl. Mater. Interfaces, 2019, 11(25):22096-22101.

    38. [38]

      WU Y, WU J, JIAO L, XU W, WANG H, WEI X, GU W, REN G, ZHANG N, ZHANG Q, HUANG L, GU L, ZHU C. Anal. Chem., 2020, 92(4):3373-3379.

    39. [39]

      GE C, WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J. Adv. Funct. Mater., 2018,28(28):1801484.

    40. [40]

      CHEN C X, LIU W D, NI P J, JIANG Y Y, ZHANG C H, WANG B, LI J K, CAO B Q, LU Y Z, CHEN W. ACS Appl. Mater. Interfaces, 2019, 11(50):47564-47570.

    41. [41]

      LIU W D, CHU L, ZHANG C H, NI P J, JIANG Y Y, WANG B, LU Y Z, CHEN C X. Chem. Eng. J., 2021, 415:128876.

    42. [42]

      JIANG X, WANG X, LIN A, WEI H. Anal. Chem., 2021, 93(14):5954-5962.

    43. [43]

      WANG J W, NI P J, CHEN C X, JIANG Y Y, ZHANG C H, WANG B, CAO B Q, LU Y Z. Microchim. Acta, 2020, 187(2):115.

    44. [44]

      ZHANG Q, YU Y, YUN X, LUO B, JIANG H, CHEN C, WANG S, MIN D. ACS Appl. Nano Mater., 2020,3(6):5212-5219.

    45. [45]

      HAYAT A, GONCA B, ANDREESCU S. Biosens. Bioelectron., 2014, 56:334-339.

    46. [46]

      CHEN Q, LI S, LIU Y, ZHANG X, TANG Y, CHAI H, HUANG Y. Sens. Actuators, B, 2020, 305:127511.

    47. [47]

      XIE X, WANG Y, ZHOU X, CHEN J, WANG M, SU X. Analyst, 2021, 146(3):896-903.

  • 加载中
    1. [1]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(15)
  • Abstract views(899)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return