Citation: WANG Bo, ZHANG Xu-Dong, KANG Ge, LIU Fang-Ning, ZHAO Dan, CHEN Chuan-Xia, LU Yi-Zhong. Colorimetric Detection of Alkaline Phosphatase Activity Based on Manganese Single Atom Nanozyme[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 54-63. doi: 10.19756/j.issn.0253-3820.210812
-
Manganese (Mn) single atom nanozyme with peroxidase-like activity was synthesized through a solvothermal method and used for the detection of alkaline phosphatase (ALP) activity. By using formamide as the carbon and nitrogen source and MnCl2 as the Mn source, formamide converted Mn and nitroren co-doped carbon (f-MnNC) could be obtained after reacting at 180℃ for 12 h. The structure and morphology were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, etc., and the peroxidase-like activity was investigated mainly using UV-visible absorption spectroscopy. In the presence of H2O2, f-MnNC could catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB), with a characteristic absorption peak centered at 652 nm. ALP could catalyze the hydrolysis of L-ascorbic acid-2-phosphate (AA2P) to produce ascorbic acid (AA), which then reduced oxTMB to TMB, resulting in faded color and decreased absorbance. The degree of colorimetric signal change was related to ALP activity, and thus ALP activity could be quantitatively detected by employing AA2P as the substrate. In the activity range of 0.1-10 mU/mL, there was a good linear relationship between the absorbance at 652 nm and the ALP activity, and the detection limit (S/N=3) was 0.059 mU/mL. Other proteins and enzymes had no obvious interference with ALP detection, indicating good selectivity for ALP activity detection. The method was successfully applied to the determination of ALP activity in serum with satisfactory results.
-
-
[1]
MILLÁN J L. Purinerg. Signal., 2006, 2(2):335.
-
[2]
FERNANDEZ N J, KIDNEY B A. Vet. Clin. Path., 2007, 36(3):223-233.
-
[3]
GOGGINS S, NAZ C, MARSH B J, FROST C G. Chem. Commun., 2015, 51(3):561-564.
-
[4]
KREUZER M P, O'SULLIVAN C K, GUILBAULT G G. Anal. Chim. Acta, 1999, 393(1):95-102.
-
[5]
BLUM J S, LI R H, MIKOS A G, BARRY M A. J. Cell Biochem., 2001, 80(4):532-537.
-
[6]
HASEGAWA T, SUGITA M, TAKATANI K, MATSUURA H, UMEMURA T, HARAGUCHI H. Bull. Chem. Soc. Jpn., 2006, 79(8):1211-1214.
-
[7]
RUAN C M, WANG W, GU B H. Anal. Chem., 2006, 78(10):3379-3384.
-
[8]
WEI H, CHEN C G, HAN B Y, WANG E K. Anal. Chem., 2008, 80(18):7051-7055.
-
[9]
CHEN C X, ZHAO D, JIANG Y Y, NI P J, ZHANG C H, WANG B, YANG F, LU Y Z, SUN J. Anal. Chem., 2019, 91(23):15017-15024.
-
[10]
ZHAO W, CHIUMAN W, LAM J C, BROOK M A, LI Y. Chem. Commun., 2007, 43(36):3729-3731.
-
[11]
SUN J, ZHAO J, BAO X, WANG Q, YANG X. Anal. Chem., 2018, 90(10):6339-6345.
-
[12]
CHEN C X, ZHANG G L, NI P J, JIANG Y Y, LU Y Z, LU Z L. Microchim. Acta, 2019, 186(6):348.
-
[13]
XIANYU Y L, WANG Z, JIANG X Y. ACS Nano, 2014, 8(12):12741-12747.
-
[14]
CHEN C X, YUAN Q, NI P J, JIANG Y Y, ZHAO Z L, LU Y Z. Analyst, 2018, 143(16):3821-3828.
-
[15]
MA J L, YIN B C, WU X, YE B C. Anal. Chem., 2016, 88(18):9219-9225.
-
[16]
CHEN C X, ZHAO J H, LU Y Z, SUN J, YANG X R. Anal. Chem., 2018, 90(5):3505-3511.
-
[17]
KIM T I, KIM H, CHOI Y, KIM Y. Chem. Commun., 2011, 47(35):9825-9827.
-
[18]
CHEN C X, ZHAO D, WANG B, NI P J, JIANG Y Y, ZHANG C H, YANG F, LU Y Z, SUN J. Anal. Chem., 2020, 92(6):4639-4646.
-
[19]
SUN J, HU T, CHEN C X, ZHAO D, YANG F, YANG X R. Anal. Chem., 2016, 88(19):9789-9795.
-
[20]
ZHAO D, LI J, PENG C Y, ZHU S Y, SUN J, YANG X R. Anal. Chem., 2019, 91(4):2978-2984.
-
[21]
MALASHIKHINA N, GARAI-IBABE G, PAVLOV V. Anal. Chem., 2013, 85(14):6866-6870.
-
[22]
BABSON A L, GREELEY S J, COLEMAN C M, PHILLIPS G E. Clin. Chem., 1966, 12(8):482-490.
-
[23]
-
[24]
YANG X, GAO Z. Chem. Commun., 2015, 51(32):6928-6931.
-
[25]
WANG C, GAO J, CAO Y, TAN H. Anal. Chim. Acta, 2018, 1004:74-81.
-
[26]
SONG H, YE K, PENG Y, WANG L, NIU X. J. Mater. Chem. B, 2019, 7(38):5834-5841.
-
[27]
TIAN F, ZHOU J, MA J, LIU S, JIAO B, HE Y. Microchim. Acta, 2019, 186(7):408.
-
[28]
JIAO L, YAN H, WU Y, GU W, ZHU C, DU D, LIN Y. Angew. Chem., Int. Ed., 2020, 59(7):2565-2576.
-
[29]
HAN L, ZHANG H, CHEN D, LI F. Adv. Funct. Mater., 2018, 28(17):1800018.
-
[30]
-
[31]
ZHANG G, JIA Y, ZHANG C, XIONG X, SUN K, CHEN R, CHEN W, KUANG Y, ZHENG L, TANG H, LIU W, LIU J, SUN X, LIN W F, DAI H. Energy Environ. Sci., 2019, 12(4):1317-1325.
-
[32]
GONG Z, YANG B, LIN H, TANG Y, TANG Z, ZHANG J, ZHANG H, LI Y, XIE Y, LI Q, CHI L. ACS Nano, 2016, 10(4):4228-4235.
-
[33]
CHEN Z, MITCHELL S, VOROBYEVA E, LEARY R K, HAUERT R, FURNIVAL T, RAMASSE Q M, THOMAS J M, MIDGLEY P A, DONTSOVA D, ANTONIETTI M, POGODIN S, LÓPEZ N, PÉREZ-RAMÍREZ J. Adv. Funct. Mater., 2017, 27(8):1605785.
-
[34]
JIANG B, DUAN D, GAO L, ZHOU M, FAN K, TANG Y, XI J, BI Y, TONG Z, GAO G F, XIE N, TANG A, NIE G, LIANG M, YAN X. Nat. Protoc., 2018, 13(7):1506-1520.
-
[35]
GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.
-
[36]
QIAO F, CHEN L, LI X, LI L, AI S. Sens. Actuators, B, 2014, 193:255-262.
-
[37]
XU W, JIAO L, YAN H, WU Y, CHEN L, GU W, DU D, LIN Y, ZHU C. ACS Appl. Mater. Interfaces, 2019, 11(25):22096-22101.
-
[38]
WU Y, WU J, JIAO L, XU W, WANG H, WEI X, GU W, REN G, ZHANG N, ZHANG Q, HUANG L, GU L, ZHU C. Anal. Chem., 2020, 92(4):3373-3379.
-
[39]
GE C, WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J. Adv. Funct. Mater., 2018,28(28):1801484.
-
[40]
CHEN C X, LIU W D, NI P J, JIANG Y Y, ZHANG C H, WANG B, LI J K, CAO B Q, LU Y Z, CHEN W. ACS Appl. Mater. Interfaces, 2019, 11(50):47564-47570.
-
[41]
LIU W D, CHU L, ZHANG C H, NI P J, JIANG Y Y, WANG B, LU Y Z, CHEN C X. Chem. Eng. J., 2021, 415:128876.
-
[42]
JIANG X, WANG X, LIN A, WEI H. Anal. Chem., 2021, 93(14):5954-5962.
-
[43]
WANG J W, NI P J, CHEN C X, JIANG Y Y, ZHANG C H, WANG B, CAO B Q, LU Y Z. Microchim. Acta, 2020, 187(2):115.
-
[44]
ZHANG Q, YU Y, YUN X, LUO B, JIANG H, CHEN C, WANG S, MIN D. ACS Appl. Nano Mater., 2020,3(6):5212-5219.
-
[45]
HAYAT A, GONCA B, ANDREESCU S. Biosens. Bioelectron., 2014, 56:334-339.
-
[46]
CHEN Q, LI S, LIU Y, ZHANG X, TANG Y, CHAI H, HUANG Y. Sens. Actuators, B, 2020, 305:127511.
-
[47]
XIE X, WANG Y, ZHOU X, CHEN J, WANG M, SU X. Analyst, 2021, 146(3):896-903.
-
[1]
-
-
[1]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[2]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[3]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[4]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[5]
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
-
[6]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[7]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[8]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[9]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[10]
Quanliang Chen , Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133
-
[11]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[12]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[13]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[14]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[15]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[16]
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
-
[17]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[18]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[19]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[20]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[1]
Metrics
- PDF Downloads(15)
- Abstract views(899)
- HTML views(158)