Citation: XIAO Cong,  LIAN Wen-Jing,  YAO Hui-Qin,  YANG Bao-Hua,  LIU Hong-Yun. Progress of Molecularly Imprinted Polymers-Electrochemiluminescence Antibiotic Sensors Based on Signal Amplification Strategies[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 173-182. doi: 10.19756/j.issn.0253-3820.210789 shu

Progress of Molecularly Imprinted Polymers-Electrochemiluminescence Antibiotic Sensors Based on Signal Amplification Strategies

  • Corresponding author: LIU Hong-Yun, liuhongyun@bnu.edu.cn
  • Received Date: 12 October 2021
    Revised Date: 20 November 2021

    Fund Project: Supported by the Key R&D Program of Ningxia Hui Autonomous Region of China (No.2018BEG03017), the Beijing Natural Science Foundation (No.2182027) and the Scientific Research Project of Tianjin Education Commission (No.2020KJ099)

  • It is significant to develop efficient, rapid and simple methods for antibiotic detection because excess antibiotic residues have become one of the most serious threats to global public health. Molecularly imprinted polymers (MIPs), as artificial chemical receptors, can recognize and bind target molecules with high affinity and selectivity. Electrochemiluminescence (ECL) is a mature and widely used analytical technique. As a new analytical and detection technology, MIP-ECL technique is a very promising method for detection of antibiotic residues due to the advantages such as good selectivity, high sensitivity and low cost. In this review, the latest development of MIP-ECL antibiotic sensors, especially constructed with signal amplification strategies, is briefly introduced. Finally, current challenges and future perspectives for MIP-ECL sensors are discussed and prospected.
  • 加载中
    1. [1]

      DONG Y C, LI F T, WANG Y. Front. Chem., 2020, 8: 551.

    2. [2]

      SUN Y M, ZHAO J L, LIANG L J. Microchim. Acta, 2021, 188(1): 21.

    3. [3]

      KULIKOVA T, GORBATCHUK V, STOIKOV I, ROGOV A, EVTUGYN G, HIANIK T. Sensors, 2020,20(17): 4738.

    4. [4]

      BOURSI B, MAMTANI R, HAYNES K, YANG Y X. Eur. J. Cancer, 2015, 51(17): 2655-2664.

    5. [5]

      WU Q, LIU X S, DUN X L, SHABBIR M A B, PENG D P, YUAN Z H, WANG Y L. Microchem. J., 2021, 161: 105796.

    6. [6]

      SHI Q Q, HUANG J, SUN Y N, YIN M Q, HU M, HU X F, ZHANG Z J, ZHANG G P. Spectrochim. Acta, Part A, 2018, 197: 107-113.

    7. [7]

      FENG Y, ZHANG W J, LIU Y W, XUE J M, ZHANG S Q, LI Z J. Molecules, 2018, 23(8): 1953.

    8. [8]

      ZAREJOUSHEGHANI M, RAHIMI P, BORSDORF H, ZIMMERMANN S, JOSEPH Y. Sensors, 2021, 21(7): 2406.

    9. [9]

      WU P, HOU X D, XU J J, CHEN H Y. Chem. Rev., 2014, 114(21): 11027-11059.

    10. [10]

      CHENG S T, LIU H M, ZHANG H, CHU G L, GUO Y M, SUN X. Sens. Actuators, B, 2020, 304: 127367.

    11. [11]

      LIU Z Y, QI W J, XU G B. Chem. Soc. Rev., 2015, 44(1): 3117-3142.

    12. [12]

      BENACHIO I, LOBATO A, GONÇALVES L M. J. Mol. Recognit., 2021, 34(3): e2878.

    13. [13]

      YANG B, FU C, LI J P, XU G B. TrAC-Trends Anal. Chem., 2018, 105: 52-67.

    14. [14]

    15. [15]

    16. [16]

      DONG Y P, ZHOU Y, WANG J, ZHU J J. Anal. Chem., 2016, 88(10): 5469-5475.

    17. [17]

      KHOSHFETRAT S M, BAGHERI H, MEHRGARDI M A. Biosens. Bioelectron., 2018, 100: 382-388.

    18. [18]

      WANG L, JIANG H M, CHAI Y Q, YUAN R, ZHUO Y. Chem. Commun., 2020, 56(63): 9000-9003.

    19. [19]

      AL-KUTUBI H, VOCI S, RASSAEI L, SOJIC N, MATHWIG K. Chem. Sci., 2018, 9(48): 8946-8950.

    20. [20]

      LI L L, CHEN Y, ZHU J J. Anal. Chem., 2017, 89(1): 358-371.

    21. [21]

      LI X, LI J P, YIN W M, ZHANG L M. J. Solid State Electrochem., 2014, 18(7): 1815-1822.

    22. [22]

      TIAN L, WU K X, HU Y, WANG Y, ZHAO Y J, CHEN R Z, LU J. Microchim. Acta, 2020, 187(6): 358.

    23. [23]

      YUAN X Y, TAN Y J, WEI X P, LI J P. Luminescence, 2017, 32(7): 1116-1122.

    24. [24]

      CAI J T, CHEN T, XU Y H, WEI S, HUANG W G, LIU R, LIU J Q. Biosens. Bioelectron., 2019, 124-125: 15-24.

    25. [25]

      CHENG R Q, DING Y L, WANG Y G, WANG H, ZHANG Y, WEI Q. RSC Adv., 2021, 11(18): 11011-11019.

    26. [26]

      CAO N, ZHAO F Q, ZENG B Z. Sens. Actuators, B, 2020, 313: 128042.

    27. [27]

      CAO N, ZENG P, ZHAO F Q, ZENG B Z. Electrochim. Acta, 2018, 291: 18-23.

    28. [28]

      KHONSARI Y N, SUN S G. J. Mater. Chem. B, 2021, 9(2): 471-478.

    29. [29]

      CHEN X Q, LIU Y, MA Q. J. Mater. Chem. C, 2018, 6(5): 942-959.

    30. [30]

      ZHAO W R, KANG T F, XU Y H, ZHANG X, LIU H, MING A J, LU L P, CHENG S Y, WEI F. Sens. Actuators, B, 2020, 306: 127563.

    31. [31]

      MO G C, QIN D M, JIANG X H, ZHENG X F, MO W M, DENG B Y. Sens. Actuators, B, 2020, 310: 127852.

    32. [32]

      JIANG Q L, ZHANG D N, CAO Y T, GAN N. J. Electroanal. Chem., 2017, 789: 1-8.

    33. [33]

    34. [34]

      MO G C, HE X C, ZHOU C Q, YA D M, FENG J S, YU C H, DENG B Y. Biosens. Bioelectron., 2019, 126: 558-564.

    35. [35]

      LI S H, LI J P, MA X H, LIU C H, PANG C H, LUO J H. Microchem. J., 2019, 148: 397-403.

    36. [36]

      CHEN S F, CHEN X Q, ZHANG L J, GAO J J, MA Q. ACS Appl. Mater. Interfaces, 2017, 9(6): 5430-5436.

    37. [37]

      RONG Y W, HASSAN M M, OUYANG Q, CHEN Q S. Compr. Rev. Food Sci. Food Saf., 2021, 20(4): 3531-3578.

    38. [38]

      JIN X C, FANG G Z, PAN M F, YANG Y K, BAI X Y, WANG S. Biosens. Bioelectron., 2018, 102: 357-364.

    39. [39]

      GU Y, WANG J P, SHI H P, PAN M F, LIU B, FANG G Z, WANG S. Biosens. Bioelectron., 2019, 128: 129-136.

    40. [40]

      CHEN S H, LI A M, ZHANG L Z, GONG J M. Anal. Chim. Acta, 2015, 896: 68-77.

    41. [41]

      LIU M, ZHANG B, ZHANG M, HU X L, CHEN W, FANG G Z, WANG S. Sens. Actuators, B, 2020, 311: 127901.

    42. [42]

      BABAMIRI B, SALIMI A, HALLAJ R. Biosens. Bioelectron., 2018, 117: 332-339.

    43. [43]

      WANG D W, JIANG S H, LIANG Y Y, WANG X B, ZHUANG X M, TIAN C Y, LUAN F, CHEN L X. Talanta, 2022, 236: 122835.

    44. [44]

      BABAMIRI B, SALIMI A, HALLAJ R, HASANZADEH M. Biosens. Bioelectron., 2018, 107: 272-279.

    45. [45]

      WU B W, WANG Z H, XUE Z H, ZHOU X B, DU J, LIU X H, LU X Q. Analyst, 2012, 137(16): 3644-3652.

    46. [46]

      LI S H, MA X H, PANG C H, WANG M Y, YIN G H, XU Z, LI J P, LUO J H. Biosens. Bioelectron., 2021, 176: 112944.

    47. [47]

      MA X, PANG C H, LI S H, LI J P, WANG M Y, XIONG Y H, SU L J, LUO J H, XU Z, LIN L Y. ACS Appl. Mater. Interfaces, 2021, 13(35): 41987-41996.

    48. [48]

      YU Y C, LU C, ZHANG M N. Anal. Chem., 2015, 87(15): 8026-8032.

    49. [49]

      LI S H, LIU C H, YIN G H, ZHANG Q, LUO J H, WU N C. Biosens. Bioelectron., 2017, 91: 687-691.

    50. [50]

    51. [51]

      LI S H, LI J P, LIN Q Y, WEI X P. Analyst, 2015, 14(13): 472-477.

    52. [52]

      CHEN H, SIMOSKA O, LIM K, GRATTIERI M, YUAN M W, DONG F Y, LEE Y S, BEAVER K, WELIWATTE S, GAFFNEY E M, MINTEER S D. Chem. Rev., 2020, 120(23): 12903-12993.

    53. [53]

      LI S H, TAO H L, LI J P. Electroanalysis, 2012, 24(7): 1664-1670.

    54. [54]

      LI J P, JIANG F Y, LI Y P, CHEN Z Q. Biosens. Bioelectron., 2011, 26(5): 2097-2101.

    55. [55]

      LI J P, LI Y P, ZHANG Y, WEI G. Anal. Chem., 2012, 84(4): 1888-1893.

    56. [56]

      LI J P, JIANG F Y, WEI X P. Anal. Chem., 2010, 82(14): 6074-6078.

    57. [57]

      LI J P, LI S H, WEI X P, TAO H L, PAN H C. Anal. Chem., 2012, 84(22): 9951-9955.

    58. [58]

      LIAN W J, LIANG J Y, SHEN L, JIN Y, LIU H Y. Biosens. Bioelectron., 2018, 100: 26-332.

    59. [59]

      KHATAEE A R, FATHINIA M, HASANZADEH A, IRANIFAM M, MORADKHANNEJHAD L. J.Lumin., 2014, 149: 272-279.

    60. [60]

      LIAN W J, YU X, WANG L, LIU H Y. J. Phys. Chem. C, 2015, 119(34): 20003-20010.

    61. [61]

      ZHANG S Y, DING Y B, WEI H. Molecules, 2014, 19(8): 11933-11987.

    62. [62]

      YANG T G, FU J Y, ZHENG S J, YAO H Q, JIN Y, LU Y L, LIU H Y. Biosens. Bioelectron., 2018, 108: 62-68.

    63. [63]

    64. [64]

      MA X H, LI S H, PANG C H, XIONG Y H, LI J P. Microchim. Acta, 2018, 185(12): 546.

    65. [65]

      MA Y M, JIN X Y, XING Y L, NI G, PENG J. Anal. Methods, 2019, 11(15): 2033-2040.

    66. [66]

      XING K, FAN R Q, DU X, ZHENG X B, ZHOU X S, GAI S, WANG P, YANG Y L. Sens. Actuators, B, 2019, 288: 307-315.

    67. [67]

      WEI B M, ZHU W Z, LI K, LIU Q, ZHANG J T, KOU H Z, XU C Z, HE L, WANG H B. LWT-Food Sci. Technol., 2022, 153: 112416.

  • 加载中
    1. [1]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    4. [4]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    5. [5]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    6. [6]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(12)
  • Abstract views(648)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return