Citation: ZHANG Yue,  ZHANG Wei,  WANG Xing-Hua,  MA Pin-Yi,  SUN Ying,  SONG Da-Qian. A Ratio Fluorescent Probe Based on g-C3N4 Nanosheets, Copper Ion and o-Phenylenediamine for Detection of Coenzyme A[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 64-72. doi: 10.19756/j.issn.0253-3820.210717 shu

A Ratio Fluorescent Probe Based on g-C3N4 Nanosheets, Copper Ion and o-Phenylenediamine for Detection of Coenzyme A

  • Corresponding author: SONG Da-Qian, songdq@jlu.edu.cn
  • Received Date: 31 August 2021
    Revised Date: 19 November 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074052).

  • A detection system based on g-C3N4 nanosheets, copper ions and o-phenylenediamine (OPD) was developed for detection of coenzyme A (CoA). By using chemically inert g-C3N4 nanosheets and oxOPD as fluorescent indicators, CoA formed a complex with Cu2+, which reduced the amount of free Cu2+ as an oxidant and quencher in the system, resulting in the OPD oxidation process being affected. Inhibition reduced the amount of oxOPD that was used as a quencher and a fluorescent indicator, resulting in the recovery of the fluorescence of g-C3N4 nanosheets, thereby changing the fluorescence intensity of the entire detection system. The ratio of the fluorescence emission intensity of g-C3N4 nanosheets to that of oxOPD (F440/F560) was used as the response signal for proportional fluorescence detection. Under the optimized experimental conditions, this method had a good proportional fluorescence response toward the concentration of CoA from 1.0 μmol/L to 100.0 μmol/L. The linear regression equation was F440/F560=0.00502CCoA (μmol/L)+0.1079 (R2=0.984). The detection limit (LOD=3 S/m) was 0.6 μmol/L. The constructed detection system had good selectivity, and was used to detect CoA in human serum samples, which proved that the system had the potential for detection of CoA in complex biological matrices.
  • 加载中
    1. [1]

      CZUMAJ A, SZROK-JURGA S, HEBANOWSKA A, TURYN J, SWIERCZYNSKI J, SLEDZINSKI T, STELMANSKA E. Int. J. Mol. Sci., 2020, 21(23):1-30.

    2. [2]

      HU Y, ZHANG L L, LI X, LIU R J, LIN L Y, ZHAO S L. ACS Sustain Chem. Eng., 2017, 5(6):4992-5000.

    3. [3]

      SHIBATA K, NAKAI T, FUKUWATARI T. Anal. Biochem., 2012, 430(2):151-155.

    4. [4]

      WU R R, LIAO L F, LI S J, YANG Y Y, XIAO X L, NIE C M. Microchim. Acta., 2016, 183(2):715-721.

    5. [5]

      LI J, GE X, JIANG C. Anal. Bioanal. Chem., 2007, 387(6):2083-2089.

    6. [6]

      GUI R J, JIN H, BU X N, FU Y X, WANG Z H, LIU Q Y. Coord. Chem. Rev., 2019, 383:82-103.

    7. [7]

      WU L, ZHU L, MA J, LI J J, LIU J W, CHEN Y P. Microchim. Acta, 2020, 187(5):273.

    8. [8]

      CHEN Z Y, XU X Q, MENG D L, JIANG H J, ZHOU Y, FENG S A, MU Z, YANG Y L. J. Fluoresc., 2020, 30(5):1007-1013.

    9. [9]

      HAN Y, YANG W X, LUO X L, HE X, ZHAO H P, TANG W Z, YUE T L, LI Z H. Crit. Rev. Food. Sci., 2020, 9:1-17.

    10. [10]

      LONG L L, HAN Y Y, YUAN X Q. CAO S Y, LIU W G. CHEN Q, WANG K, HAN Z X. Food Chem., 2020, 331:127359.

    11. [11]

      ZHENG K B, CHEN H, FANG S R, WANG Y. Sens. Actuators, B, 2016, 233:193-198.

    12. [12]

      WU L Y, ZENG W H, FENG L D, HU Y X, SUN Y D, YAN Y X, CHEN H Y, YE D J. Sci. China. Chem., 2020, 63(5):741-750.

    13. [13]

      ZHANG X, XIE X, WANG H, ZHANG J, PAN B, XIE Y. J. Am. Chem. Soc., 2013, 135(1):18-21.

    14. [14]

      HUANG X, ZENG Z Y, BAO S Y. WANG M F, QI X Y, FAN Z X, ZHANG H. Nat. Commun., 2013, 4:1444.

    15. [15]

      ZHANG Z Y, HUANG J D, ZHANG M Y, YUAN Q, DONG B. Appl. Catal., B, 2015, 163:298-305.

    16. [16]

      CHEN L C, SONG J B. Adv. Funct. Mater., 2017, 27(39):1702695.

    17. [17]

      MEI H, SHU H W, LV M L, LIU W, WANG X D. Microchim. Acta, 2020, 187(3):159.

    18. [18]

      WANG Q B, WANG W, LEI J P, XU N, GAO F F, JU H X. Anal. Chem., 2013, 85(24):12182-12188.

    19. [19]

      LIU J W, LUO Y, WANG Y M, DUAN L Y, JIANG J H, YU R Q. ACS Appl. Mater. Interfaces, 2016, 8(49):33439-33445.

    20. [20]

      HAN J, ZOU H Y, GAO M H, HUANG C Z. Talanta, 2016, 148:279-284.

    21. [21]

      AFKHAMI A, HASHEMI P, BAGHERI H, SALIMIAN J, AHMADI A, MADRAKIAN T. Biosens. Bioelectron., 2017, 93:124-131.

    22. [22]

      GUO Q X, XIE Y, WANG X J, ZHANG S Y, HOU T, LV S C. Chem. Commun., 2004, (1):26-27.

    23. [23]

      TIAN J Q, LIU Q, ASIRI A M, AL-YOUBI A O, SUN X P. Anal. Chem., 2013, 85(11):5595-5599.

    24. [24]

      MIAO L Y, JIAO L, TANG Q R, LI H, ZHANG L H, WEI Q. Sens. Actuators, B, 2019, 288:60-64.

    25. [25]

      XU F Z, TANG H Y, YU J H, GE J. Talanta, 2021, 224:121838.

    26. [26]

      LONG R Q, GUO Y, XIE L W, SHI S Y, XU J Y, TONG C Y, LIN Q Y, LI T. Food. Chem., 2020, 315:126171.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    3. [3]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    6. [6]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    14. [14]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(13)
  • Abstract views(641)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return