Citation: ZHANG Yue,  ZHANG Wei,  WANG Xing-Hua,  MA Pin-Yi,  SUN Ying,  SONG Da-Qian. A Ratio Fluorescent Probe Based on g-C3N4 Nanosheets, Copper Ion and o-Phenylenediamine for Detection of Coenzyme A[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 64-72. doi: 10.19756/j.issn.0253-3820.210717 shu

A Ratio Fluorescent Probe Based on g-C3N4 Nanosheets, Copper Ion and o-Phenylenediamine for Detection of Coenzyme A

  • Corresponding author: SONG Da-Qian, songdq@jlu.edu.cn
  • Received Date: 31 August 2021
    Revised Date: 19 November 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074052).

  • A detection system based on g-C3N4 nanosheets, copper ions and o-phenylenediamine (OPD) was developed for detection of coenzyme A (CoA). By using chemically inert g-C3N4 nanosheets and oxOPD as fluorescent indicators, CoA formed a complex with Cu2+, which reduced the amount of free Cu2+ as an oxidant and quencher in the system, resulting in the OPD oxidation process being affected. Inhibition reduced the amount of oxOPD that was used as a quencher and a fluorescent indicator, resulting in the recovery of the fluorescence of g-C3N4 nanosheets, thereby changing the fluorescence intensity of the entire detection system. The ratio of the fluorescence emission intensity of g-C3N4 nanosheets to that of oxOPD (F440/F560) was used as the response signal for proportional fluorescence detection. Under the optimized experimental conditions, this method had a good proportional fluorescence response toward the concentration of CoA from 1.0 μmol/L to 100.0 μmol/L. The linear regression equation was F440/F560=0.00502CCoA (μmol/L)+0.1079 (R2=0.984). The detection limit (LOD=3 S/m) was 0.6 μmol/L. The constructed detection system had good selectivity, and was used to detect CoA in human serum samples, which proved that the system had the potential for detection of CoA in complex biological matrices.
  • 加载中
    1. [1]

      CZUMAJ A, SZROK-JURGA S, HEBANOWSKA A, TURYN J, SWIERCZYNSKI J, SLEDZINSKI T, STELMANSKA E. Int. J. Mol. Sci., 2020, 21(23):1-30.

    2. [2]

      HU Y, ZHANG L L, LI X, LIU R J, LIN L Y, ZHAO S L. ACS Sustain Chem. Eng., 2017, 5(6):4992-5000.

    3. [3]

      SHIBATA K, NAKAI T, FUKUWATARI T. Anal. Biochem., 2012, 430(2):151-155.

    4. [4]

      WU R R, LIAO L F, LI S J, YANG Y Y, XIAO X L, NIE C M. Microchim. Acta., 2016, 183(2):715-721.

    5. [5]

      LI J, GE X, JIANG C. Anal. Bioanal. Chem., 2007, 387(6):2083-2089.

    6. [6]

      GUI R J, JIN H, BU X N, FU Y X, WANG Z H, LIU Q Y. Coord. Chem. Rev., 2019, 383:82-103.

    7. [7]

      WU L, ZHU L, MA J, LI J J, LIU J W, CHEN Y P. Microchim. Acta, 2020, 187(5):273.

    8. [8]

      CHEN Z Y, XU X Q, MENG D L, JIANG H J, ZHOU Y, FENG S A, MU Z, YANG Y L. J. Fluoresc., 2020, 30(5):1007-1013.

    9. [9]

      HAN Y, YANG W X, LUO X L, HE X, ZHAO H P, TANG W Z, YUE T L, LI Z H. Crit. Rev. Food. Sci., 2020, 9:1-17.

    10. [10]

      LONG L L, HAN Y Y, YUAN X Q. CAO S Y, LIU W G. CHEN Q, WANG K, HAN Z X. Food Chem., 2020, 331:127359.

    11. [11]

      ZHENG K B, CHEN H, FANG S R, WANG Y. Sens. Actuators, B, 2016, 233:193-198.

    12. [12]

      WU L Y, ZENG W H, FENG L D, HU Y X, SUN Y D, YAN Y X, CHEN H Y, YE D J. Sci. China. Chem., 2020, 63(5):741-750.

    13. [13]

      ZHANG X, XIE X, WANG H, ZHANG J, PAN B, XIE Y. J. Am. Chem. Soc., 2013, 135(1):18-21.

    14. [14]

      HUANG X, ZENG Z Y, BAO S Y. WANG M F, QI X Y, FAN Z X, ZHANG H. Nat. Commun., 2013, 4:1444.

    15. [15]

      ZHANG Z Y, HUANG J D, ZHANG M Y, YUAN Q, DONG B. Appl. Catal., B, 2015, 163:298-305.

    16. [16]

      CHEN L C, SONG J B. Adv. Funct. Mater., 2017, 27(39):1702695.

    17. [17]

      MEI H, SHU H W, LV M L, LIU W, WANG X D. Microchim. Acta, 2020, 187(3):159.

    18. [18]

      WANG Q B, WANG W, LEI J P, XU N, GAO F F, JU H X. Anal. Chem., 2013, 85(24):12182-12188.

    19. [19]

      LIU J W, LUO Y, WANG Y M, DUAN L Y, JIANG J H, YU R Q. ACS Appl. Mater. Interfaces, 2016, 8(49):33439-33445.

    20. [20]

      HAN J, ZOU H Y, GAO M H, HUANG C Z. Talanta, 2016, 148:279-284.

    21. [21]

      AFKHAMI A, HASHEMI P, BAGHERI H, SALIMIAN J, AHMADI A, MADRAKIAN T. Biosens. Bioelectron., 2017, 93:124-131.

    22. [22]

      GUO Q X, XIE Y, WANG X J, ZHANG S Y, HOU T, LV S C. Chem. Commun., 2004, (1):26-27.

    23. [23]

      TIAN J Q, LIU Q, ASIRI A M, AL-YOUBI A O, SUN X P. Anal. Chem., 2013, 85(11):5595-5599.

    24. [24]

      MIAO L Y, JIAO L, TANG Q R, LI H, ZHANG L H, WEI Q. Sens. Actuators, B, 2019, 288:60-64.

    25. [25]

      XU F Z, TANG H Y, YU J H, GE J. Talanta, 2021, 224:121838.

    26. [26]

      LONG R Q, GUO Y, XIE L W, SHI S Y, XU J Y, TONG C Y, LIN Q Y, LI T. Food. Chem., 2020, 315:126171.

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    3. [3]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    4. [4]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    7. [7]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    8. [8]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    9. [9]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Futao YiYing LiuYao ChenJiahao ZhuQuanguo HeChun YangDongge MaJun Liu . Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation. Chinese Chemical Letters, 2025, 36(8): 110544-. doi: 10.1016/j.cclet.2024.110544

    14. [14]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    17. [17]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    20. [20]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

Metrics
  • PDF Downloads(15)
  • Abstract views(923)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return