Citation: LIU Ting,  LIN Xiao-Hui,  CHEN Qian,  BIAN Xiao-Jun,  YAN Juan. An Electrochemical Sensor Based on Surface Molecularly Imprinted Polymer for Detection of Salmonella Paratyphi B[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 127-135. doi: 10.19756/j.issn.0253-3820.210715 shu

An Electrochemical Sensor Based on Surface Molecularly Imprinted Polymer for Detection of Salmonella Paratyphi B

  • Corresponding author: BIAN Xiao-Jun,  YAN Juan, 
  • Received Date: 30 August 2021
    Revised Date: 24 October 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775102) and the Natural Science Foundation of Shanghai Municipal, China (No.20ZR1424100).

  • Salmonella Paratyphi B (S.Paratyphi B) is one of the most widespread pathogenic bacteria causing foodborne disease. It is of great significance to construct a rapid and sensitive analysis method for detection of S.Paratyphi B. In this work, a simple, efficient and cost-effective surface bacteria-imprinted film-based impedance sensor was prepared. First of all, with S.Paratyphi B as the template and thiophene-3-ethanol as the functional monomer, the polythiophene and bacteria were co-deposited on the surface of glassy carbon electrode by cyclic voltammetry. After in situ removal of the template bacteria, a surface bacterial imprinting film was formed on the electrode surface, which could specifically recognize the target bacteria and successfully realize the label-free detection of the target bacteria. Under the optimal experimental conditions, this bacterial imprinted impedance sensor showed good analysis performance, e.g., fast recognition (10 min), wide linear range (1.0×101-1.0×106 CFU/mL), low detection limit (approximately 2.0 CFU/mL), and good selectivity. In addition, this impedance sensor could be successfully applied to detection of S.Paratyphi B in real samples with good recovery. Compared with the existing bacterial biosensor, the impedance sensor here had many advantages such as high preparation efficiency (only 5 min for imprinted film formation), low cost and environmental friendliness, showing potential applications in detection of foodborne pathogenic bacteria.
  • 加载中
    1. [1]

      WANG Y, GOU X Y, YUE T L, REN R, ZHAO H A, HE L L, LIU C Y, CAO W. Food Chem., 2021, 337(1):127774.

    2. [2]

      WU Y X, WU M J, LIU C, TIAN Y C, FANG S Q, YANG H, LI B, LIU Q. Food Control, 2021, 126:108052.

    3. [3]

      WANG P X, PANG S, PEARSON B, CHUJO Y, MCLANDSBOROUGH L, FAN M T, HE L L. Anal. Bioanal. Chem., 2017, 409(8):2229-2238.

    4. [4]

      HUANG F C, XUE L, QI W Z, CAI G Z, LIU Y J, LIN J H. Biosens. Bioelectron., 2021, 176:112921.

    5. [5]

      MAJDINASAB M, HAYAT A, MARTY J L. TrAC-Trends Anal. Chem., 2018, 107:60-77.

    6. [6]

      CORDOVANA M, MAUDER N, KOSTRZEWA M, WILLE A, ROJAK S, HAGEN R M, AMBRETTI S, PONGOLINI S, SOLIANI L, JUSTESEN U S, HOLT H M, JOIN-LAMBERT O, HELLO S L, AUZOU M, VELOO A C, MAY J, FRICKMANN H, DEKKER D. Microorganisms, 2021, 9(4):853-866.

    7. [7]

      UMESHA S, MANUKUMAR H M. Crit. Rev. Food Sci. Nutr., 2018, 58(1):84-104.

    8. [8]

    9. [9]

    10. [10]

      ZHU F L, BIAN X J, ZHANG H C, WEN Y L, CHEN Q, YAN Y L, LI L, LIU G, YAN J. Biosens. Bioelectron., 2021, 176:112943.

    11. [11]

      KHAN M A R, CARDOSO A R A, SALES M G F, MERINO S, TOMAS J M, RIUS F X, RIU J. Sens. Actuators, B, 2017, 244:732-741.

    12. [12]

      KUSS S, AMIN H M A, COMPTON R G. Chem. Asian J., 2018, 13(19):2758-2769.

    13. [13]

      WU J K, WANG R N, LU Y F, JIA M, YAN J, BIAN X J. Anal. Chem., 2019, 91(1):1027-1033.

    14. [14]

      CAO Y R, FENG T Y, XU J, XUE C H. Biosens. Bioelectron., 2019, 141:18-23.

    15. [15]

      CHAI R, WANG Y Y, KAN X W. Food Chem., 2021, 340:127944.

    16. [16]

      DONG C Y, SHI H X, HAN Y R, YANG Y Y, WANG R X, MEN J Y. Eur. Polym., 2021, 145:110231-110256.

    17. [17]

      MOREIRA G, ALVES L. Curr. Opin. Electrochem., 2021, 25:100640.

    18. [18]

      SOARES R R A, HJORT R G, POLA C C, PARATE K, REIS E L, SOARES N F F, MCLAMORE E S, CLAUSSEN J C, GOMES C L. ACS Sens., 2020, 5(7):1900-1911.

    19. [19]

      WEN T, WANG R H, SOTERO A, LI Y B. Sensors, 2017, 17(9):1973-1979.

    20. [20]

      WANG L J, WANG R H, CHEN F, JIANG T S, WANG H, SLAVIK M, WEI H, LI Y B. Food Chem., 2017, 221(15):776-782.

    21. [21]

      GOLABI M, KURALAY F, JAGER E W H, BENI V, TURNER A P F. Biosens. Bioelectron., 2017, 93(1):87-93.

    22. [22]

      WANG R N, WANG L L, YAN J, LUAN D L, TAO S, WU J K, BIAN X J. Talanta, 2021, 226:122135.

    23. [23]

      PERCIN I, IDIL N, BAKHSHPOUR M, YILMAZ E, MATTIASSON B, DENIZLI A. Sensors, 2017, 17(6):1375-13788.

    24. [24]

      LI F, LI F, CHEN B, ZHOU B, YU P, YU S, LAI W, XU H. Food Control, 2017, 73:587-594.

    25. [25]

      WANG W, LIU L, SONG S, TANG L, KUANG H, XU C. Sensors, 2015, 15(3):5281-5292.

    26. [26]

      SANNIGRAHIA S, ARUMUGASAMYB S K, MATHIYARASUB J, KA S. Mater. Sci. Eng. C, 2020, 114:111071-111087.

    27. [27]

      SHEIKHZADEH E, CHAMSAZ M, TURNER A P F, JAGER E W H, BENI V. Biosens. Bioelectron., 2016,80(1):194-200.

    28. [28]

    29. [29]

      YILMAZ E, MAJIDI D, OZGUR E, DENIZLI A. Sens. Actuators, B, 2015, 209:714-721.

    30. [30]

      KUSHWAHA A, SRIVASTAVA J, SINGH A K, ANAND R, RAGHUWANSHI R, RAI T, SINGH M. Biosens. Bioelectron., 2019, 145:111698.

    31. [31]

      IDIL N, HEDSTROM M, DENIZLI A, MATTIASSON B. Biosens. Bioelectron., 2017, 87:807-815.

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(24)
  • Abstract views(690)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return