Citation: LU Xi-Yue,  LI Zheng,  YU Qiu-Ling,  CUI Guang-Huan,  ZHANG Cheng,  ZHANG Jian-Fei. Research Progress of New Technology of Hydrogel pH Sensors[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 163-172. doi: 10.19756/j.issn.0253-3820.210707 shu

Research Progress of New Technology of Hydrogel pH Sensors

  • Corresponding author: LI Zheng, lizheng_nx@163.com
  • Received Date: 26 August 2021
    Revised Date: 4 November 2021

    Fund Project: Supported by the Tianjin College Students Innovation and Entrepreneurship Training Program (No.202010058071), the Tianjin Key Research and Development Project (No.20YFZCSN00130), the National Key Research and Development Project of China (Nos.2017YFB0309800, 2016YFC0400503-02), the Xinjiang Autonomous Region Major Significant Project Foundation (No.2016A03006-3), the Tianjin Natural Science Foundation (No.18JCYBJC89600), the Science and Technology Guidance Project of China National Textile and Apparel Council (No.2017011) and the Innovation Research Institute of Wolfberry Industry Co. LTD (No.ZNGQCX-B-2019006)

  • pH value is one of the most important characteristics in many scientific fields. Since the 1980s, the concept of cheap, reliable and compact pH monitoring has evolved. In many chemical productions, accurate and real-time pH detection is needed. Biochemical and biomedical fields also have great demand for pH monitoring of the microenvironment. In this context, hydrogel pH sensor comes into being, which is a new pH monitoring technology combining responsive hydrogel with sensor. Due to its characteristics of miniaturization and intelligence, it can be applied to many fields such as chemical engineering, biomedicine and environmental detection. This paper reviewed the research progress of hydrogel pH sensing technology in recent years, which was mainly divided into optical, mechanical and electromagnetic principles. And several types of hydrogel pH sensors were described. In addition, the main performance parameters, advantages and disadvantages of various types of hydrogel pH sensors were compared. And the applicable pH range, sensitivity and response time of different types of hydrogel pH sensors were emphatically analyzed. Finally, the challenges and future development of hydrogel pH sensing technology were discussed and prospected.
  • 加载中
    1. [1]

      STEINEGGER A, WOLFBEIS O S, BORISOV S M. Chem. Rev., 2020, 120(22): 12357-12489.

    2. [2]

      YIN M, YAO M, GAO S, ZHANG A P, TAM H, WAI P A. Adv. Mater., 2016, 28(7): 1394-1399.

    3. [3]

      LEE Y J, BRAUN P V. Adv. Mater., 2003, 15(78): 563-566.

    4. [4]

      LEE K, ASHER S A. J. Am. Chem. Soc., 2000, 122(39): 9534-9537.

    5. [5]

      RUAN C, ZENG K, GRIMES C A. Anal. Chim. Acta, 2003, 497(1): 123-131.

    6. [6]

      NOMAN A A, DASH J N, CHENG X, LEONG C Y, TAM H, YU C. Opt. Express, 2020, 28(26): 39640-39648.

    7. [7]

      MANJAKKAL L, SZWAGIERCZAK D, DAHIYA R. Prog. Mater. Sci., 2020, 109: 100635.

    8. [8]

      MANJAKKAL L, DERVIN S, RAVINDER. RSC Adv., 2020, 10: 8594-8617.

    9. [9]

      YETISEN A K, JIANG N, FALLAHI A, MONTELONGO Y, RUIZ ESPARZA G U, TAMAYOL A, ZHANG Y S, MAHMOOD I, YANG S A, KIM K S, BUTT H, KHADEMHOSSEINI A, YUN S H. Adv. Mater., 2017,29(15): 1606380.

    10. [10]

      JIANG N, AHMED R, RIFAT A A, GUO J, YIN Y, MONTELONGO Y, BUTT H, YETISEN A K. Adv. Opt. Mater., 2018, 6(3): 1701118.

    11. [11]

      HUA J C, LI Z, XIA W, YANG N, GONG J X, ZHANG J F, QIAO C S. Mater. Sci. Eng., C, 2016, (61): 879-892.

    12. [12]

      LI Z, HE G D, HUA J C, WU M Q, GUO W, GONG J X, ZHANG J F, QIAO C S. RSC Adv., 2017, 7(18): 11085-11093.

    13. [13]

    14. [14]

      DOU C Y, LI Z, GONG J X, LI Q J, QIAO C S, ZHANG J F. Int. J. Biol. Macromol., 2021, 170: 354-365.

    15. [15]

    16. [16]

      RICHTER A, PASCHEW G, KLATT S, LIENIG J, ARNDT K, ADLER H P. Sensors, 2008, 8(1): 561-581.

    17. [17]

    18. [18]

      VIVALDI F, SALVO P, POMA N, BONINI A, BIAGINI D, DEL NOCE L, MELAI B, LISI F, FRANCESCO F D. Chemosensors, 2021, 9(2): 33.

    19. [19]

      WANG L Q, YANG L, ZHANG C, MIAO C Y, ZHAO J F, XU W. Opt. Laser Technol., 2019, 109: 193-198.

    20. [20]

      LEE S, IBEY B L, COTÉ G L, PISHKO M V. Sens. Actuators, B, 2008, 128(2): 388-398.

    21. [21]

      SHIN J, BRAUN P V, LEE W. Sens. Actuators, B, 2010, 150(1): 183-190.

    22. [22]

      SHAIBANI P M, JIANG K, HAGHIGHAT G, HASSANPOURFARD M, ETAYASH H, NAICKER S, THUNDAT T. Sens. Actuators, B, 2016, 226: 176-183.

    23. [23]

      CORRES J M, MATIAS I R, DEL VILLAR I, ARREGUI F J. IEEE Sens. J., 2007, 7(3-4): 455-463.

    24. [24]

      CHEN W, DILLON W, ARMSTRONG E, MORATTI S, MCGRAW C. Talanta, 2021, 225: 121969.

    25. [25]

      LI C S, CAO M S, WANG R G, WANG Z P, QIAO Y J, WAN L B, TIAN Q, LIU H T, ZHANG D Q,LIANG T X, TANG C H. Compos. Sci. Technol., 2003, 63(12): 1749-1758.

    26. [26]

      HOU W B, CRONIN S B. Adv. Funct. Mater., 2013, 23(13): 1612-1619.

    27. [27]

      JAMES S W, TATAM R P. Meas. Sci. Technol., 2003, 14(5): R49-R61.

    28. [28]

      ALBERT J, SHAO L Y, CAUCHETEUR C. Laser Photonics Rev., 2013, 7(1): 83-108.

    29. [29]

      MISHRA S K, ZOU B, CHIANG K S. IEEE J. Sel. Top. Quantum Electron., 2017, 23(2): 284-288.

    30. [30]

      MISHRA S K, CHIANG K S. Opt. Laser Technol., 2020, 131: 106464-106471.

    31. [31]

      DEL VILLAR I, PARTRIDGE M, RODRIGUEZ W, FUENTES O, SOCORRO A, DIAZ S, CORRES J, JAMES S, TATAM R. Sensors, 2017, 17(9): 2094-2105.

    32. [32]

      SANG J, GU Z, LING Q. J. Opt. Soc. Am. B, 2017, 34(11): 2358-2366.

    33. [33]

      NI Y, DING S, HAN B, WANG H. Sens. Actuators, B, 2019, 301: 127120.

    34. [34]

      WEN H, WENG J, CHIANG C. IEEE Sens. J., 2021, 21(10): 12137-12145.

    35. [35]

      ZHANG C, ZHAO J, MIAO C, LI H, BAI H, ZHANG M. Opt. Eng., 2015, 54(8): 87104-87110.

    36. [36]

      BAI R, WANG J, JIA H, ZHANG C, GAO F, CUI Z, YANG G, ZHANG H. Chemosphere, 2019, 226: 553-564.

    37. [37]

      LEE K, ASHER S A. J. Am. Chem. Soc., 2000, 122(39): 9534-9537.

    38. [38]

      JANTING J, PEDERSEN J K M, WOYESSA G, NIELSEN K, BANG O. J. Lightwave Technol., 2019, 37(18): 4480-4486.

    39. [39]

      ALDABAA A, GONZALEZ-VILA A, DEBLIQUY M, LOPEZ-AMO M, CAUCHETEUR C, LAHEM D. Sens. Actuators, B, 2018, 254: 1087-1093.

    40. [40]

      MAYER K M, HAFNER J H. Chem. Rev., 2011, 111(6): 3828-3857.

    41. [41]

      ZENG S W, BAILLARGEAT D, HO H P, YONG K T. Chem. Soc. Rev., 2014, 43(10): 3426-3452.

    42. [42]

      AGRAWAL A, CHO S H, ZANDI O, GHOSH S, JOHNS R W, MILLIRON D J. Chem. Rev., 2018, 118(6): 3121-3207.

    43. [43]

      ZENG S W, BAILLARGEAT D, HO H P, YONG K T. Chem. Soc. Rev., 2014, 43(10): 3426-3452.

    44. [44]

      ZHAO Z, SUN Y, DONG F. Nanoscale, 2015, 7(1): 15-37.

    45. [45]

      SINGH S, GUPTA B D. Sens. Actuators, B, 2012, 173(6): 268-273.

    46. [46]

      ZHAO Y, LEI M, LIU S X, ZHAO Q. Sens. Actuators, B, 2018, 261(1): 226-232.

    47. [47]

      HENDI A, UMAIR HASSAN M, ELSHERIF M, ALQATTAN B, PARK S, YETISEN A K, BUTT H. Int. J. Nanomed., 2020, 15: 3887-3901.

    48. [48]

      PINELLI F, MAGAGNIN L, ROSSI F. Mater. Today Chem., 2020, 17: 100317.

    49. [49]

      BINDER S, GERLACH G. Tech. Mess., 2018, 85(s1): s45-s51.

    50. [50]

      BINDER S, GERLACH G. Tech. Mess., 2019, 86(4): 227-236.

    51. [51]

      BINDER S, ZSCHOCHE S, VOIT B, GERLACH G. J. Electrochem. Soc., 2020, 167(16): 167521.

    52. [52]

      DENG K, BELLMANN C, FU Y, ROHN M, GUENTHER M, GERLACH G. Sens. Actuators, B, 2018,255(Pt 3): 3495-3504.

    53. [53]

      YANG L, JIANG C, YAN J, SHEN Y, CHEN Y, XU L, ZHU H. Composites, Part A, 2020, 134: 105898.

    54. [54]

      MEENA K, SANKAR A. IEEE Sens. J., 2021, 9(21): 10241-10290.

    55. [55]

      HUANG Y, FAN X Y, CHEN S C, ZHAO N. Adv. Funct. Mater., 2019, 29(12): 1808509.

    56. [56]

      TRINH Q T, GERLACH G, SORBER J, ARNDT K. Sens. Actuators, B, 2005, 117(1): 17-26.

    57. [57]

      SORBER J, STEINER G, SCHULZ V, GUENTHER M, GERLACH G, SALZER R, ARNDT K. Anal. Chem., 2008, 80(8): 2957-2962.

    58. [58]

      ERFKAMP J, GUENTHER M, GERLACH G. Sensors, 2019, 19(13): 2858-2872.

    59. [59]

      ERFKAMP J, GUENTHER M, GERLACH G. Sensors, 2019, 19(4): 971-983.

    60. [60]

      ERFKAMP J, GUENTHER M, GERLACH G. Sensors, 2019, 19(5): 1199-1212.

    61. [61]

      BEEBE D J, MOORE J S, BAUER J M, YU Q, LIU R H, DEVADOSS C, JO B H. Nature, 2000, 404(6778): 588-590.

    62. [62]

      CARRASCOSA L G, MORENO M, ÁLVAREZ M, LECHUGA L M. TrAC-Trends Anal. Chem., 2006, 25(3): 196-206.

    63. [63]

      BASHIR R, HILT J Z, ELIBOL O, GUPTA A, PEPPAS N A. Appl. Phys. Lett., 2002, 81(16): 3091-3093.

    64. [64]

      ZHANG Y, JI H, SNOW D, STERLING R, BROWN G M. Instrum. Sci. Technol., 2004, 32(4): 361-369.

    65. [65]

      CHENG C I, CHANG Y P, CHU Y H. Chem. Soc. Rev., 2012, 41(5): 1947-1971.

    66. [66]

      DILTEMIZ S, KECILI R, ERSOZ A, SAY R. Sensors, 2017, 3(17): 454.

    67. [67]

      ANDREAS R, ANDREAS B, MATTHIAS K, KARL-FRIEDRICH A. Sens. Actuators, B, 2004, 99(2): 579-585.

    68. [68]

      TOKUYAMA H, KITAMURA E, SEIDA Y. React. Funct. Polym., 2020, 146: 104427.

    69. [69]

      SANNINO A, PAPPADÀ S, GIOTTA L, VALLI L, MAFFEZZOLI A. J. Appl. Polym. Sci., 2007, 106(5): 3040-3050.

    70. [70]

    71. [71]

      CAI Q Y, GRIMES C A. Sens. Actuators, B, 2000, 71(1): 112-117.

    72. [72]

      RUAN C, ONG K G, MUNGLE C, PAULOSE M, NICKL N J, GRIMES C A. Sens. Actuators, B, 2003, 96(1): 61-69.

    73. [73]

      RUAN C, ZENG K, GRIMES C A. Anal. Chim. Acta, 2003, 497(1): 123-131.

    74. [74]

      PANG P, GAO X, XIAO X, YANG W, CAI Q, YAO S. Anal. Sci., 2007, 23(4): 463-467.

    75. [75]

      CHUANMIN R, KEFENG Z, CRAIG A G. Anal. Chim. Acta, 2003, 497(1): 123-131.

    76. [76]

      YATIM K M, KRISHNAN G, BAKHTIAR H, DAUD S, HARUN S W. J. Phys.: Conf. Ser., 2019, 1371: 012021.

    77. [77]

      LARA-PENA M A, LICEA-CLAVERIE A, ZAPATA-GONZÁLEZ I, LAURATI M. J. Colloid Interface Sci., 2021, 587: 437-445.

    78. [78]

      CAN M, SAHINER N. J. Colloid Interface Sci., 2021, 588: 40-49.

    79. [79]

      CARVALHO W S P, LEE C, ZHANG Y, CZARNECKI A, SERPE M J. J. Colloid Interface Sci., 2021, 585: 195-204.

    80. [80]

      HU C, XU W, CONRADS C M, WU J, PICH A. J. Colloid Interface Sci., 2021, 582(PB): 1075-1084.

    81. [81]

      BHATTACHARYYA S K, DULE M, PAUL R, DASH J, ANAS M, MANDAL T K, DAS P, DAS N C, BANERJEE S. ACS Biomater. Sci. Eng., 2020, 6(10): 5662-5674.

    82. [82]

      RODELL C, DUSAJ N, HIGHLEY C, BURDICK J. Adv. Mater., 2016, 38(28): 8419-8424.

    83. [83]

      SUN T, LUO F, HONG W, CUI K, HUANG Y, ZHANG H, KING D, KUROKAWA T, NAKAJIMA T, GONG J. Macromolecules, 2017, 7(50): 2923-2931.

    84. [84]

      YANG C H, CHENG S, YAO X, NIAN G D, LIU Q, SUO Z G. Adv. Mater., 2020, 32(47): 2005545.

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    4. [4]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    6. [6]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    12. [12]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    15. [15]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    16. [16]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    17. [17]

      Faqiong Zhao Xiaohang Qiu Yanping Ren Juanjuan Song Dongcheng Liu Xiuqiong Zeng Wenwei Zhang Mei Shi Min Hu Wan Li Yongxian Fan Yiru Wang Xiuyun Wang Weihong Li Yong Fan Jianrong Zhang Shuyong Zhang . The Use of pH Indicator Papers and pH Meters. University Chemistry, 2025, 40(5): 32-39. doi: 10.12461/PKU.DXHX202503099

    18. [18]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    19. [19]

      Chen-Xin WangGuang-Lei LiYu HangDan-Feng LuJian-Qi YeHao SuBing HouTao SuoDan Wen . Shock-resistant wearable pH sensor based on tungsten oxide aerogel. Chinese Chemical Letters, 2025, 36(7): 110502-. doi: 10.1016/j.cclet.2024.110502

    20. [20]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

Metrics
  • PDF Downloads(25)
  • Abstract views(1094)
  • HTML views(232)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return