Citation: LU Xi-Yue,  LI Zheng,  YU Qiu-Ling,  CUI Guang-Huan,  ZHANG Cheng,  ZHANG Jian-Fei. Research Progress of New Technology of Hydrogel pH Sensors[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 163-172. doi: 10.19756/j.issn.0253-3820.210707 shu

Research Progress of New Technology of Hydrogel pH Sensors

  • Corresponding author: LI Zheng, lizheng_nx@163.com
  • Received Date: 26 August 2021
    Revised Date: 4 November 2021

    Fund Project: Supported by the Tianjin College Students Innovation and Entrepreneurship Training Program (No.202010058071), the Tianjin Key Research and Development Project (No.20YFZCSN00130), the National Key Research and Development Project of China (Nos.2017YFB0309800, 2016YFC0400503-02), the Xinjiang Autonomous Region Major Significant Project Foundation (No.2016A03006-3), the Tianjin Natural Science Foundation (No.18JCYBJC89600), the Science and Technology Guidance Project of China National Textile and Apparel Council (No.2017011) and the Innovation Research Institute of Wolfberry Industry Co. LTD (No.ZNGQCX-B-2019006)

  • pH value is one of the most important characteristics in many scientific fields. Since the 1980s, the concept of cheap, reliable and compact pH monitoring has evolved. In many chemical productions, accurate and real-time pH detection is needed. Biochemical and biomedical fields also have great demand for pH monitoring of the microenvironment. In this context, hydrogel pH sensor comes into being, which is a new pH monitoring technology combining responsive hydrogel with sensor. Due to its characteristics of miniaturization and intelligence, it can be applied to many fields such as chemical engineering, biomedicine and environmental detection. This paper reviewed the research progress of hydrogel pH sensing technology in recent years, which was mainly divided into optical, mechanical and electromagnetic principles. And several types of hydrogel pH sensors were described. In addition, the main performance parameters, advantages and disadvantages of various types of hydrogel pH sensors were compared. And the applicable pH range, sensitivity and response time of different types of hydrogel pH sensors were emphatically analyzed. Finally, the challenges and future development of hydrogel pH sensing technology were discussed and prospected.
  • 加载中
    1. [1]

      STEINEGGER A, WOLFBEIS O S, BORISOV S M. Chem. Rev., 2020, 120(22): 12357-12489.

    2. [2]

      YIN M, YAO M, GAO S, ZHANG A P, TAM H, WAI P A. Adv. Mater., 2016, 28(7): 1394-1399.

    3. [3]

      LEE Y J, BRAUN P V. Adv. Mater., 2003, 15(78): 563-566.

    4. [4]

      LEE K, ASHER S A. J. Am. Chem. Soc., 2000, 122(39): 9534-9537.

    5. [5]

      RUAN C, ZENG K, GRIMES C A. Anal. Chim. Acta, 2003, 497(1): 123-131.

    6. [6]

      NOMAN A A, DASH J N, CHENG X, LEONG C Y, TAM H, YU C. Opt. Express, 2020, 28(26): 39640-39648.

    7. [7]

      MANJAKKAL L, SZWAGIERCZAK D, DAHIYA R. Prog. Mater. Sci., 2020, 109: 100635.

    8. [8]

      MANJAKKAL L, DERVIN S, RAVINDER. RSC Adv., 2020, 10: 8594-8617.

    9. [9]

      YETISEN A K, JIANG N, FALLAHI A, MONTELONGO Y, RUIZ ESPARZA G U, TAMAYOL A, ZHANG Y S, MAHMOOD I, YANG S A, KIM K S, BUTT H, KHADEMHOSSEINI A, YUN S H. Adv. Mater., 2017,29(15): 1606380.

    10. [10]

      JIANG N, AHMED R, RIFAT A A, GUO J, YIN Y, MONTELONGO Y, BUTT H, YETISEN A K. Adv. Opt. Mater., 2018, 6(3): 1701118.

    11. [11]

      HUA J C, LI Z, XIA W, YANG N, GONG J X, ZHANG J F, QIAO C S. Mater. Sci. Eng., C, 2016, (61): 879-892.

    12. [12]

      LI Z, HE G D, HUA J C, WU M Q, GUO W, GONG J X, ZHANG J F, QIAO C S. RSC Adv., 2017, 7(18): 11085-11093.

    13. [13]

    14. [14]

      DOU C Y, LI Z, GONG J X, LI Q J, QIAO C S, ZHANG J F. Int. J. Biol. Macromol., 2021, 170: 354-365.

    15. [15]

    16. [16]

      RICHTER A, PASCHEW G, KLATT S, LIENIG J, ARNDT K, ADLER H P. Sensors, 2008, 8(1): 561-581.

    17. [17]

    18. [18]

      VIVALDI F, SALVO P, POMA N, BONINI A, BIAGINI D, DEL NOCE L, MELAI B, LISI F, FRANCESCO F D. Chemosensors, 2021, 9(2): 33.

    19. [19]

      WANG L Q, YANG L, ZHANG C, MIAO C Y, ZHAO J F, XU W. Opt. Laser Technol., 2019, 109: 193-198.

    20. [20]

      LEE S, IBEY B L, COTÉ G L, PISHKO M V. Sens. Actuators, B, 2008, 128(2): 388-398.

    21. [21]

      SHIN J, BRAUN P V, LEE W. Sens. Actuators, B, 2010, 150(1): 183-190.

    22. [22]

      SHAIBANI P M, JIANG K, HAGHIGHAT G, HASSANPOURFARD M, ETAYASH H, NAICKER S, THUNDAT T. Sens. Actuators, B, 2016, 226: 176-183.

    23. [23]

      CORRES J M, MATIAS I R, DEL VILLAR I, ARREGUI F J. IEEE Sens. J., 2007, 7(3-4): 455-463.

    24. [24]

      CHEN W, DILLON W, ARMSTRONG E, MORATTI S, MCGRAW C. Talanta, 2021, 225: 121969.

    25. [25]

      LI C S, CAO M S, WANG R G, WANG Z P, QIAO Y J, WAN L B, TIAN Q, LIU H T, ZHANG D Q,LIANG T X, TANG C H. Compos. Sci. Technol., 2003, 63(12): 1749-1758.

    26. [26]

      HOU W B, CRONIN S B. Adv. Funct. Mater., 2013, 23(13): 1612-1619.

    27. [27]

      JAMES S W, TATAM R P. Meas. Sci. Technol., 2003, 14(5): R49-R61.

    28. [28]

      ALBERT J, SHAO L Y, CAUCHETEUR C. Laser Photonics Rev., 2013, 7(1): 83-108.

    29. [29]

      MISHRA S K, ZOU B, CHIANG K S. IEEE J. Sel. Top. Quantum Electron., 2017, 23(2): 284-288.

    30. [30]

      MISHRA S K, CHIANG K S. Opt. Laser Technol., 2020, 131: 106464-106471.

    31. [31]

      DEL VILLAR I, PARTRIDGE M, RODRIGUEZ W, FUENTES O, SOCORRO A, DIAZ S, CORRES J, JAMES S, TATAM R. Sensors, 2017, 17(9): 2094-2105.

    32. [32]

      SANG J, GU Z, LING Q. J. Opt. Soc. Am. B, 2017, 34(11): 2358-2366.

    33. [33]

      NI Y, DING S, HAN B, WANG H. Sens. Actuators, B, 2019, 301: 127120.

    34. [34]

      WEN H, WENG J, CHIANG C. IEEE Sens. J., 2021, 21(10): 12137-12145.

    35. [35]

      ZHANG C, ZHAO J, MIAO C, LI H, BAI H, ZHANG M. Opt. Eng., 2015, 54(8): 87104-87110.

    36. [36]

      BAI R, WANG J, JIA H, ZHANG C, GAO F, CUI Z, YANG G, ZHANG H. Chemosphere, 2019, 226: 553-564.

    37. [37]

      LEE K, ASHER S A. J. Am. Chem. Soc., 2000, 122(39): 9534-9537.

    38. [38]

      JANTING J, PEDERSEN J K M, WOYESSA G, NIELSEN K, BANG O. J. Lightwave Technol., 2019, 37(18): 4480-4486.

    39. [39]

      ALDABAA A, GONZALEZ-VILA A, DEBLIQUY M, LOPEZ-AMO M, CAUCHETEUR C, LAHEM D. Sens. Actuators, B, 2018, 254: 1087-1093.

    40. [40]

      MAYER K M, HAFNER J H. Chem. Rev., 2011, 111(6): 3828-3857.

    41. [41]

      ZENG S W, BAILLARGEAT D, HO H P, YONG K T. Chem. Soc. Rev., 2014, 43(10): 3426-3452.

    42. [42]

      AGRAWAL A, CHO S H, ZANDI O, GHOSH S, JOHNS R W, MILLIRON D J. Chem. Rev., 2018, 118(6): 3121-3207.

    43. [43]

      ZENG S W, BAILLARGEAT D, HO H P, YONG K T. Chem. Soc. Rev., 2014, 43(10): 3426-3452.

    44. [44]

      ZHAO Z, SUN Y, DONG F. Nanoscale, 2015, 7(1): 15-37.

    45. [45]

      SINGH S, GUPTA B D. Sens. Actuators, B, 2012, 173(6): 268-273.

    46. [46]

      ZHAO Y, LEI M, LIU S X, ZHAO Q. Sens. Actuators, B, 2018, 261(1): 226-232.

    47. [47]

      HENDI A, UMAIR HASSAN M, ELSHERIF M, ALQATTAN B, PARK S, YETISEN A K, BUTT H. Int. J. Nanomed., 2020, 15: 3887-3901.

    48. [48]

      PINELLI F, MAGAGNIN L, ROSSI F. Mater. Today Chem., 2020, 17: 100317.

    49. [49]

      BINDER S, GERLACH G. Tech. Mess., 2018, 85(s1): s45-s51.

    50. [50]

      BINDER S, GERLACH G. Tech. Mess., 2019, 86(4): 227-236.

    51. [51]

      BINDER S, ZSCHOCHE S, VOIT B, GERLACH G. J. Electrochem. Soc., 2020, 167(16): 167521.

    52. [52]

      DENG K, BELLMANN C, FU Y, ROHN M, GUENTHER M, GERLACH G. Sens. Actuators, B, 2018,255(Pt 3): 3495-3504.

    53. [53]

      YANG L, JIANG C, YAN J, SHEN Y, CHEN Y, XU L, ZHU H. Composites, Part A, 2020, 134: 105898.

    54. [54]

      MEENA K, SANKAR A. IEEE Sens. J., 2021, 9(21): 10241-10290.

    55. [55]

      HUANG Y, FAN X Y, CHEN S C, ZHAO N. Adv. Funct. Mater., 2019, 29(12): 1808509.

    56. [56]

      TRINH Q T, GERLACH G, SORBER J, ARNDT K. Sens. Actuators, B, 2005, 117(1): 17-26.

    57. [57]

      SORBER J, STEINER G, SCHULZ V, GUENTHER M, GERLACH G, SALZER R, ARNDT K. Anal. Chem., 2008, 80(8): 2957-2962.

    58. [58]

      ERFKAMP J, GUENTHER M, GERLACH G. Sensors, 2019, 19(13): 2858-2872.

    59. [59]

      ERFKAMP J, GUENTHER M, GERLACH G. Sensors, 2019, 19(4): 971-983.

    60. [60]

      ERFKAMP J, GUENTHER M, GERLACH G. Sensors, 2019, 19(5): 1199-1212.

    61. [61]

      BEEBE D J, MOORE J S, BAUER J M, YU Q, LIU R H, DEVADOSS C, JO B H. Nature, 2000, 404(6778): 588-590.

    62. [62]

      CARRASCOSA L G, MORENO M, ÁLVAREZ M, LECHUGA L M. TrAC-Trends Anal. Chem., 2006, 25(3): 196-206.

    63. [63]

      BASHIR R, HILT J Z, ELIBOL O, GUPTA A, PEPPAS N A. Appl. Phys. Lett., 2002, 81(16): 3091-3093.

    64. [64]

      ZHANG Y, JI H, SNOW D, STERLING R, BROWN G M. Instrum. Sci. Technol., 2004, 32(4): 361-369.

    65. [65]

      CHENG C I, CHANG Y P, CHU Y H. Chem. Soc. Rev., 2012, 41(5): 1947-1971.

    66. [66]

      DILTEMIZ S, KECILI R, ERSOZ A, SAY R. Sensors, 2017, 3(17): 454.

    67. [67]

      ANDREAS R, ANDREAS B, MATTHIAS K, KARL-FRIEDRICH A. Sens. Actuators, B, 2004, 99(2): 579-585.

    68. [68]

      TOKUYAMA H, KITAMURA E, SEIDA Y. React. Funct. Polym., 2020, 146: 104427.

    69. [69]

      SANNINO A, PAPPADÀ S, GIOTTA L, VALLI L, MAFFEZZOLI A. J. Appl. Polym. Sci., 2007, 106(5): 3040-3050.

    70. [70]

    71. [71]

      CAI Q Y, GRIMES C A. Sens. Actuators, B, 2000, 71(1): 112-117.

    72. [72]

      RUAN C, ONG K G, MUNGLE C, PAULOSE M, NICKL N J, GRIMES C A. Sens. Actuators, B, 2003, 96(1): 61-69.

    73. [73]

      RUAN C, ZENG K, GRIMES C A. Anal. Chim. Acta, 2003, 497(1): 123-131.

    74. [74]

      PANG P, GAO X, XIAO X, YANG W, CAI Q, YAO S. Anal. Sci., 2007, 23(4): 463-467.

    75. [75]

      CHUANMIN R, KEFENG Z, CRAIG A G. Anal. Chim. Acta, 2003, 497(1): 123-131.

    76. [76]

      YATIM K M, KRISHNAN G, BAKHTIAR H, DAUD S, HARUN S W. J. Phys.: Conf. Ser., 2019, 1371: 012021.

    77. [77]

      LARA-PENA M A, LICEA-CLAVERIE A, ZAPATA-GONZÁLEZ I, LAURATI M. J. Colloid Interface Sci., 2021, 587: 437-445.

    78. [78]

      CAN M, SAHINER N. J. Colloid Interface Sci., 2021, 588: 40-49.

    79. [79]

      CARVALHO W S P, LEE C, ZHANG Y, CZARNECKI A, SERPE M J. J. Colloid Interface Sci., 2021, 585: 195-204.

    80. [80]

      HU C, XU W, CONRADS C M, WU J, PICH A. J. Colloid Interface Sci., 2021, 582(PB): 1075-1084.

    81. [81]

      BHATTACHARYYA S K, DULE M, PAUL R, DASH J, ANAS M, MANDAL T K, DAS P, DAS N C, BANERJEE S. ACS Biomater. Sci. Eng., 2020, 6(10): 5662-5674.

    82. [82]

      RODELL C, DUSAJ N, HIGHLEY C, BURDICK J. Adv. Mater., 2016, 38(28): 8419-8424.

    83. [83]

      SUN T, LUO F, HONG W, CUI K, HUANG Y, ZHANG H, KING D, KUROKAWA T, NAKAJIMA T, GONG J. Macromolecules, 2017, 7(50): 2923-2931.

    84. [84]

      YANG C H, CHENG S, YAO X, NIAN G D, LIU Q, SUO Z G. Adv. Mater., 2020, 32(47): 2005545.

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    3. [3]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    11. [11]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    14. [14]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    17. [17]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    18. [18]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

Metrics
  • PDF Downloads(23)
  • Abstract views(788)
  • HTML views(161)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return