Citation: HE Fei,  ZHANG Tian-Cong,  CHEN Dan,  DING Ling,  Deng Su-Rong,  MI Yong-Hua,  LIU Zhan-Shu,  LI Yuan. Analysis of Dose-effect Relationship of Tirofiban Inhibiting Platelet Adhesion Aggregation Using Microscopic Three-dimensional Imaging Technology[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 244-252. doi: 10.19756/j.issn.0253-3820.210671 shu

Analysis of Dose-effect Relationship of Tirofiban Inhibiting Platelet Adhesion Aggregation Using Microscopic Three-dimensional Imaging Technology

  • Corresponding author: LI Yuan, liyuan_1985999@163.com
  • Received Date: 11 August 2021
    Revised Date: 8 December 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.11702047), the Special Project of Science and Technology Innovation for People′s Livelihood Security of Chongqing (No.cstc2017shmsA130009), the Chongqing Medical Research Program (No.2017MSXM079), the Special Project of Science and Technology Innovation for Livelihood Security of Yongchuan (No.Ycstc2018cc0206) and the Research Project of Yongchuan Hospital, Chongqing Medical University(No.YJLC202033)

  • The dose-effect relationship of tirofiban (a platelet membrane glycoprotein (GP) Ⅱb/Ⅲa receptor antagonist) in inhibiting platelet adhesion and aggregation was qualitatively and quantitatively evaluated using a novel microscopic three-dimensional (3D) imaging technology. The platelet-rich plasma (PRP) of healthy volunteers was firstly treated by 0-50 μg/mL tirofiban, and then added to collagen fibrin and glass surfaces respectively to induce platelet activation and aggregation. The 3D morphological images of platelet adhesion and aggregation under different experimental conditions were observed by laser microscopic 3D imaging technology. The volume and area coverage rate of platelet aggregates, and the number and activated count of adhesion platelet were quantified. The results showed that the 3D micro-morphology of platelet aggregates formed on the surfaces of collagen fibrin and glass could be visually observed by the laser microscopic 3D imaging technology. The platelet aggregates formed on the surface of collagen fibrin were thin, and those on the surface of glass were hill-like. When the final concentration of tirofiban was 1.56-12.5 μg/mL, the volume and area coverage rate of platelet aggregate decreased significantly with the increase of tirofiban final concentration. When the concentration increased to 25 and 50 μg/mL, platelets adhered to collagen fibrin only, and the number of platelet adhesion and the proportion of activated platelets decreased significantly with the increase of concentration. On the glass surface, the tirofiban with concentration of 1.56 μg/mL could reduce the volume and area coverage rate of platelet aggregates; and when the concentration was 3.15-50 μg/mL, it could completely inhibit platelet aggregation, and the number of platelet adhesion and the proportion of activated platelets decreased with the increase of tirofiban concentration. As a result, when the concentration was 3.15-12.5 μg/mL, tirofiban could not only completely inhibit platelet aggregation on the glass surface but retain partial aggregation ability on collagen fibrin surface. The microscopic 3D imaging technique could quantitatively and qualitatively analyze the dose-effect relationship of tirofiban inhibiting platelet adhesion aggregation on collagen fibrin surface and glass surface, which provided a new analytical method for rational clinical selection of tirofiban dose.
  • 加载中
    1. [1]

      KOUPENOVA M, KEHREL B E, CORKREY H A, FREEDMAN J E. Eur. Heart J., 2017, 38(11): 785-791.

    2. [2]

      HAYBAR H, PEZESHKI S M S, SAKI N. Curr. Cardiol. Rev., 2020, 16(4): 285-291.

    3. [3]

      HOLINSTAT M. Cancer Metastasis Rev., 2017, 36(2): 195-198.

    4. [4]

    5. [5]

      SCHNEIDER D J. Br. J. Clin. Pharmacol., 2011, 72(4): 672-682.

    6. [6]

      YANG M, HUO X, MIAO Z, WANG Y. Drugs, 2019, 79(5): 515-529.

    7. [7]

      ZHOU X, WU X, SUN H, LI J. J. Evidence-Based Med., 2017, 10(2): 136-144.

    8. [8]

      HVAS A M, FAVALORO E J. Methods Mol. Biol., 2017, 1646(1): 321-331.

    9. [9]

      MSHELBWALA F S, HUGENBERG D W, KREUTZ R P. Clin. Pharmacol., 2020, 12(1): 35-41.

    10. [10]

      FAVALORO E J, BONAR R. Platelets, 2018, 29(6): 622-627.

    11. [11]

      YAHATA C, MOCHIZUKI A. Mater. Sci. Eng., C, 2017, 78: 1119-1124.

    12. [12]

      DAVYDOVSKAYA P, JANKO M, GAERTNER F, AHMAD Z, SIMSEK O, MABBERG S, STARK R W.J. Biomed. Mater. Res. A, 2012, 100(2): 335-341.

    13. [13]

      BOUDEJLTIA K Z, RIBEIRO D E, SOUSA D, UZUREAU P,YOURASSOWSKY C, PEREZ-MORGA D, COURBEBAISSE G, CHOPARD B, DUBOIS F. Biomed. Opt. Express, 2015, 6(9): 3556-3563.

    14. [14]

    15. [15]

      HOSSEINI E, BESHKAR P, GHASEMZADEH M. J. Thromb. Thrombolysis, 2018, 46(4): 534-540.

    16. [16]

      HORBETT T A. J. Biomed. Mater. Res. A, 2018, 106(10): 2777-2788.

    17. [17]

      DONATI A, GUPTA S, REVIAKINE I. Biointerphases, 2016, 11(2): 029811-1-6.

    18. [18]

      WANG H, FENG M. Medicine (Baltimore), 2020, 99(23): e20402-e20408.

  • 加载中
    1. [1]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    4. [4]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    5. [5]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    6. [6]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    7. [7]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

    8. [8]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    9. [9]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    10. [10]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    11. [11]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    12. [12]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    13. [13]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    14. [14]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    15. [15]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    16. [16]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    17. [17]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    18. [18]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    19. [19]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    20. [20]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

Metrics
  • PDF Downloads(6)
  • Abstract views(707)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return