Citation: WANG Hai-Yan,  ZHANG Xi-Mei,  CUI Xiu-Xiu,  KANG Peng,  ZHANG Yan,  ZHANG Jia-Ying,  GE Wu-Peng. Structural Analysis of Human Milk Oligosaccharides via High Resolution Mass Spectrometry and Optimization of Chromatographic Separation Conditions[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 278-289. doi: 10.19756/j.issn.0253-3820.210603 shu

Structural Analysis of Human Milk Oligosaccharides via High Resolution Mass Spectrometry and Optimization of Chromatographic Separation Conditions

  • Corresponding author: GE Wu-Peng, josephge@nwafu.edu.cn
  • Received Date: 1 July 2021
    Revised Date: 25 November 2021

    Fund Project: Supported by the School-Enterprise Cooperation Project (No.K4030220076)

  • Human milk oligosaccharides (HMOs) are closely related to the growth and development of infants in early life. In this study, the structures of 19 HMOs (16 neutral HMOs and 3 sialylated HMOs) were analyzed by ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Based on the cleavage rules of oligosaccharide isomers, the differences of fragment ions among the four groups of isomers were discussed. The separation effects of HMOs isomers under three different UHPLC conditions were compared, which provided scientific basis for the structural analysis of complex HMOs isomers and the selection of UHPLC conditions.
  • 加载中
    1. [1]

      STAHL B, THURL S, ZENG J, KARAS M, HILLENKAMP F, STEUP M, SAWATZKIT G. Anal. Biochem., 1994, 223(2): 218-226.

    2. [2]

      SOUSA Y R F, MEDEIROS L B, PINTADO M M E, QUEIROGA R C R E. Trends Food Sci. Technol., 2019, 92: 152-161.

    3. [3]

      ZIVKOVIC A M, GERMAN J B, LEBRILLA C B, MILLS D A. Proc. Natl. Acad. Sci. U. S. A., 2011,108(Suppl 1): 4653-4658.

    4. [4]

      THURL S, MUNZERT M, HENKER J, BOEHM G, MULLER-WERNER B, JELINEK J, STAHL B. Br. J. Nutr., 2010, 104(9): 1261-1271.

    5. [5]

      MEHRA R, KELLY P. Int. Dairy J., 2006, 16(11): 1334-1340.

    6. [6]

    7. [7]

      ALDREDGE D L, GERONIMO M R, HUA S, NWOSU C C, LEBRILLA C B, BARILE D. Glycobiology, 2013, 23(6): 664-676.

    8. [8]

      CHAI W, PISKAREV V E, ZHANG Y, LAWSON A M, KOGELBERG H. Arch. Biochem. Biophys., 2005,434(1): 116-127.

    9. [9]

      KAILEMIA M J, RUHAAK L R, LEBRILLA C B, AMSTER I J. Anal. Chem., 2014, 86(1): 196-212.

    10. [10]

      ELWAKIEL M, HAGEMAN J A, WANG W, SZETO I M, VAN GOUDOEVER J B, HETTINGA K A,SCHOLS H A. J. Agric. Food Chem., 2018, 66(27): 7036-7043.

    11. [11]

      MARTIN-ORTIZ A, BARILE D, SALCEDO J, MORENO F J, CLEMENTE A, RUIZ-MATUTE A I, SANZ M L. J. Agric. Food Chem., 2017, 65(17): 3523-3531.

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

      WEI J, WANG Z A, WANG B, JAHAN M, WANG Z F, WYNN P C, DU Y G. Sci. Rep., 2018, 8: 4688.

    18. [18]

      LU J, ZHANG Y, SONG B, ZHANG S W, PANG X Y, SARI R N, LIU L, WANG J H, LV J P. Carbohydr. Polym., 2020, 235: 115965.

    19. [19]

      XU G, DAVIS J C, GOONATILLEKE E, SMILOWITZ J T, GERMAN J B, LEBRILLA C B. J. Nutr., 2017,147(1): 117-124.

    20. [20]

      RAMAKRISHNAN B, BOEGGEMAN E, QASBA P K. Biochem. Biophys. Res. Commun., 2002, 291(5): 1113-1118.

    21. [21]

      KOBATA A. Chang Gung Med. J., 2003, 26(9): 621-636.

    22. [22]

      MCGUIRE M, MCGUIRE M A, BODE L. Prebiotics and Probiotics in Human Milk: Origins and Functions of Milk-Borne Oligosaccharides and Bacteria. USA: Academic Press, 2016: 24-39.

    23. [23]

      WU S, TAO N, GERMAN J B, GRIMM R, LEBRILLA C B. J. Proteome Res., 2010, 9: 4138-4151.

    24. [24]

      BODE L. Glycobiology, 2012, 22(9): 1147-1162.

    25. [25]

      AYECHU-MURUZABAL V, VAN STIGT A H, MANK M, WILLEMSEN L E M, STAHL B, GARSSEN J,VAN'T LAND B. Front. Pediatr., 2018, 6: 239.

    26. [26]

      DOMON B, COSTELLO C E. Glycoconjugate J., 1988, 5(4): 397-405.

    27. [27]

      CHAI W, PISKAREV V, LAWSON A M. Anal. Chem., 2001, 73(3): 651-657.

    28. [28]

      WU S, GRIMM R, GERMAN J B, LEBRILLA C B. J. Proteome Res., 2011, 10: 856-868.

    29. [29]

      ZHANG H, ZHANG S, TAO G, ZHANG Y, MULLOY B, ZHAN X, CHAI W. Anal. Chem., 2013, 85(12): 5940-5949.

    30. [30]

      BLACK B A, LEE V S, ZHAO Y Y, HU Y, CURTIS J M, GANZLE M G. J. Agric. Food Chem., 2012,60(19): 4886-4894.

    31. [31]

      CHAI W, LAWSON A M, PISKAREV V. J. Am. Soc. Mass Spectrom., 2002, 13: 670-679.

    32. [32]

      WHEELER S F, HARVEY D J. Anal. Chem., 2000, 70(20): 5027-5039.

    33. [33]

      VAZQUEZ E, SANTOS-FANDILA A, BUCK R, RUEDA R, RAMIREZ M. Br. J. Nutr., 2017, 117(2): 237-247.

    34. [34]

      JANTSCHER-KRENN E, TREICHLER C, BRANDL W, SCHONBACHER L, KOFELER H, VAN POPPEL M N. Am. J. Clin. Nutr., 2019, 110(6): 1335-1343.

    35. [35]

      JAMES K, BOTTACINI F, CONTRERAS J I S, VIGOUREUX M, EGAN M, MOTHERWAY M O C, HOLMES E, VAN SINDEREN D. Sci. Rep., 2019, 9: 15427.

    36. [36]

      LIU Z, AULDIST M, WRIGHT M, COCKS B, ROCHFORT S. J. Agric. Food Chem., 2017, 65(7): 1307-1313.

  • 加载中
    1. [1]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    2. [2]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    3. [3]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    4. [4]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    9. [9]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    19. [19]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(7)
  • Abstract views(612)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return