Citation: GAO Nan,  WANG Shuai-Peng,  LIU Xu,  XIA Da-Cheng,  CAI Zhi-Wei,  CHANG Gang,  HE Yun-Bin. Controllable Preparation of Ag-Au Bimetallic Nanotubes for Non-invasive Detection of Glucose in Sweat[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1640-1648. doi: 10.19756/j.issn.0253-3820.210601 shu

Controllable Preparation of Ag-Au Bimetallic Nanotubes for Non-invasive Detection of Glucose in Sweat

  • Corresponding author: CHANG Gang,  HE Yun-Bin, 
  • Received Date: 1 July 2021
    Revised Date: 3 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.51672074, 11774082, 11975093), the Natural Science Foundation of Hubei Province, China (No.2019CFA006) and the Wuhan Application Foundation Frontier Project (No.201801041011287).

  • Real-time monitoring of blood glucose levels is of great significance for the diagnosis and treatment of diabetic patients. However, traditional enzymatic minimally invasive determinations have problems such as low stability and poor experience. By using silver nanowires as a template, high-quality Ag-Au bimetallic nanotubes (Ag-Au BMNTs/GCE) could be successfully prepared by a one-step Galvanic replacement reaction to realize the non-enzymatic and non-invasive measurement of glucose. By optimizing the content of HAuCl4, the morphology and composition of Ag-Au bimetallic nanotubes could be controlled. The research results showed that the Ag-Au BMNTs/GCE had a wide detection range for glucose detection (1 μmol/L-3.79 mmol/L, 3.79 mmol/L-13.79 mmol/L), high sensitivity (154.09 μA/(mmol/L), 60.77 μA/(mmol/L)) and low detection limit (1 μmol/L). At the same time, the sensor showed good anti-interference performance and stability, and was successfully applied to the accurate determination of glucose content in human sweat, which indicated that the electrochemical sensor based on Ag-Au BMNTs had potential application value in the field of non-enzyme and non-invasive blood glucose detection.
  • 加载中
    1. [1]

      SU S, LU W Z, LIA J, HAO Q, LIU W, ZHU C F, SHEN X Z, SHI.J Y, WANG L H. New J. Chem., 2018, 42:6750-6755.

    2. [2]

      XU J, XUK K, HAN Y, WANG D, LI X, HU T, YI H, NI Z H. Analyst, 2020, 145:5141-5147.

    3. [3]

      SHAO M F, XU X Y, HAN J B, ZHAO J W, SHI W Y, KONG X G, WEI M, EVANS D G, DUAN X. Langmuir, 2011, 27(13):8233-8240.

    4. [4]

      CASH K J, CLARK H A. Trends Mol. Med., 2010, 16(12):584-593.

    5. [5]

      TIAN K, PRESTGAID M, TIWARI A. Mater. Sci. Eng., C, 2014, 41:100-118.

    6. [6]

      LIU J, SHEN X, BAIMANOV D, WANG L, XIAO Y, LIU H, LI Y, GAO X, ZHAO Y, CHEN C. ACS Appl. Mater. Interfaces, 2019, 11(3):2647-2654.

    7. [7]

      KIM H S, LEE J S, KIM M I. J.Nanosci. Nanotechnol., 2020, 20(9):5333-5337.

    8. [8]

      JANG H, OH J, KI H, KIM M G. Analyst, 2020, 145(17):5740-5743.

    9. [9]

      CHANG G, SHU H H, JI K, ORAMA M, LIU X, HE Y B. Appl. Surf. Sci., 2014, 288:524-529.

    10. [10]

      ENSAFI A A, ZANDI-ATASHBAR N, REZAEI B, GHIACI M, CHERMAHINI M E, MOSHIRI P. RSC Adv., 2016, 6(65):60926-60932.

    11. [11]

      SHU H H, CHANG G, SU J, CAO L L, HUANG Q W, ZHANG Y T, XIA T T, HE Y B. Sens. Actuators, B, 2015, 220:331-339.

    12. [12]

      NIU X, LAN M, ZHAO H, CHEN C. Anal. Chem., 2013, 85(7):3561-3569.

    13. [13]

      JIA H M, CHANG G, LEI M, HE H P, LIU X, SHU H H, XIA T T, SU J, HE Y B. Appl. Surf. Sci., 2016, 384:58-64.

    14. [14]

      YE J H, DENG D M, WANG Y Q, LUO L Q, QIAN K P, CAO S M, FENG X. Sens. Actuators, B, 2020, 305:127473.

    15. [15]

      ZHU T X, WANG X E, CHANG W W, ZHANG Y F, MARUYAMA T, LUO L Q, ZHAO X L. Mater. Sci. Eng., C, 2021, 120:111757.

    16. [16]

      MOYER J, WILSON D, FINKELSHTEIN I, WONG B, POTTS R. Diabetes Technol. Ther., 2012, 14(5):398-402.

    17. [17]

      LIPANI L, DUPONT B G R, DOUNGMENE F, MARKEN F, TYRRELL R H, GUY R N, ILIE A. Nat. Nanotechnol., 2018, 13(6):504-511.

    18. [18]

      NANTAPHOL S, WATANABE T, NOMURA N, SIANGPROH W, CHAILAPAKUL O, EINAGA Y. Biosens. Bioelectron., 2017, 98:76-82.

    19. [19]

      GARCÍA-MORALES N G, GARCÍA-CERDA L A, PUENTE-URBINA B A, BLANCO-JEREZ L M, ANTAÑO-LÓPEZ R, CASTAÑEDA-ZALDIVAR F. J. Nanomater., 2015, 2015:205314.

    20. [20]

      ARVINTE A, CRUDU I A, DOROFTEI F, TIMPU D, PINTEALA M. J. Electroanal. Chem., 2018, 829:184-193.

    21. [21]

      CHEN L, LONG K, YU X, LI W, GENG B. Chem. -Eur. J., 2013, 19(35):11753-11758.

    22. [22]

      HUNYADI S E, MURPHY C J. J. Mater. Chem., 2006, 16(40):3929-3935.

    23. [23]

      WU P, GAO Y, ZHANG H, CAI C. Anal. Chem., 2012, 84(18):7692-7699.

    24. [24]

      COSTA J C, CORIO P, ROSSI L M. Nanoscale, 2015, 7(18):8536-8543.

    25. [25]

      YANG P H, GAO X, WANG L S, WU Q, CHEN Z C, LIN X F. Microchim. Acta, 2013, 181(1-2):231-238.

    26. [26]

      LI B, YE S, STEWART I E, ALVAREZ S, WILEY B J. Nano Lett., 2015, 15(10):6722-6726.

    27. [27]

      SUN Y G, XIA Y N. J. Am. Chem. Soc., 2004, 126(12):3892-3901.

    28. [28]

      DA SILVA R R, YANG M, CHOI S I, CHI M, LUO M, ZHANG C, LI Z Y, CAMARGO P H, RIBEIRO S J, XIA Y N. ACS Nano, 2016, 10(8):7892-7900.

    29. [29]

      JACKSON J B, WESTCOTT S L, HIRSCH L R, WEST J L, HALAS N J. Appl. Phys. Lett., 2003, 82(2):257-259.

    30. [30]

      SHIN K S, KIM J H, KIM I H, KIM K. J. Nanopart. Res., 2012, 14(3):735.

    31. [31]

      ALQUDAMI A, ANNAPOORNI S, GOVIND, SHIVAPRASAD S M. J. Nanopart Res., 2008, 10(6):1027-1036.

    32. [32]

      SHI Q F, DIAO G W, MU S L. Electrochim. Acta, 2014, 133:335-346.

    33. [33]

      LEE H, SONG C, SEOK Y, HONG Y S, MIN S K, CHO H R. Sci. Adv., 2017, 3(3):1601314.

    34. [34]

      YU H L, HE Y. Sen. Actuators, B, 2015, 209:877-882.

    35. [35]

      CHEN X L, PAN H B, LIU H F, DU M. Electrochim. Acta, 2010, 56(2):636-643.

    36. [36]

      MAYORGA-MARTINEZ C C, GUIX M, MADRID R E, MERKOCI A. Chem. Commun., 2012, 48(11):1686-1688.

    37. [37]

      YUAN M, LIU A P, ZHAO M, DONG W J, ZHAO T Y, WANG J J, TANG W H. Sens. Actuators, B, 2014, 190:707-714.

    38. [38]

      SAVK A, CELLAT K, ARIKAN K, TEZCAN F, GULBAY S K, KIZILDAG S, ISGIN E S, SEN F. Sci. Rep., 2019, 9:19228.

    39. [39]

      BO X J, BAI J, YANG L, GUO L P. Sens. Actuators, B, 2011, 157(2):662-668.

    40. [40]

      LIN K C, YANG C Y, CHEN S M. Int. J. Electrochem. Sci., 2015, 10(5):3726-3737.

    41. [41]

      CAO X, WANG N, JIA S, SHAO Y. Anal. Chem., 2013, 85(10):5040-5046.

    42. [42]

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    13. [13]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

Metrics
  • PDF Downloads(10)
  • Abstract views(581)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return