Citation: LI Shi-Cheng,  LI Ming-Hui,  CHEN Zi-Long,  ZHU Xin-Hai. Analysis of Nonpolar Polymers by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 82-91. doi: 10.19756/j.issn.0253-3820.210593 shu

Analysis of Nonpolar Polymers by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Corresponding author: ZHU Xin-Hai, zhuxinh@mail.sysu.edu.cn
  • Received Date: 28 June 2021
    Revised Date: 18 November 2021

  • The influence of ionization reagent on the determination results of non-polar polymers by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) was investigated. As a comparison, trans-2-[3-(4-tert-butylphenyl)-2-methyl-propylene] malononitrile (DCTB) was selected as the matrix, and polybutadiene 5000 (PB5000), polystyrene (PS) with different degree of polymerization and polyethylene 2000 (PE2000) were selected as the samples.The ionization of nine copper salts was investigated. The results showed that, under the same test conditions, copper nitrate could be used as an ionization reagent for the analysis of three kinds of non-polar polymers with the best signal intensity and resolution of the polymer spectra.In the analysis of PB5000, further cold-field scanning electron microscopy (SEM) analysis showed that copper nitrate mixed with PB5000 and DCTB could obtain more uniform crystallization in comparison with other copper salts.Using DCTC as the matrix and copper nitrate as the cation reagent, thin layer chromatography-matrix-assisted laser desorption ionization time of flight mass spectrometry (TLC-MALDI-TOF MS) coupling technology couldeffectively reduce or eliminate the influence of ion inhibition caused by dopants such as small molecule salt (sodium iodide) and other polymers (polyethylene glycol) which were easy to ionize in the analysis of polyolefin by MALDI-TOF. The effective analysis of impurity doped polymers PB5000 and PS4000 was realized successfully. This method had many advantages such as fast analysis speed, low cost and simple operation. This study provided an effective solution for MALDI-TOF MS analysis of low purity nonpolar polymers.
  • 加载中
    1. [1]

      KOICHI T, HIROAKI W, YUTAKA I, SATOSHI A, YOSHIKAZU Y, TAMIO Y. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.

    2. [2]

      MICHAEL K, FRANZ H. Anal. Chem., 1988, 60(20):2299-2301.

    3. [3]

      NICOLARDI S, KILGOUR D P A, DOLEZAL N, DRIJFHOUT J W, WUHRER M, BURGT Y E M V D. Anal. Chem., 2020, 92(8):5871-5881.

    4. [4]

    5. [5]

      ZHAO X Y, HUANG Y, MA G, LIU Y Q, GUO C, HE Q, WANG H W, LIAO J C, PAN Y J. Anal. Chem., 2020, 92(1):991-998.

    6. [6]

    7. [7]

      RYBICKA M, MILOSZ E, BIELAWSKI K P. Viruses, 2021, 13(5):730.

    8. [8]

      TRAN A, WAN L T, XU Z B, HARO J M, LI B, JONES J W. J. Am. Soc. Mass Spectrom., 2021, 32(1):289-300.

    9. [9]

    10. [10]

      DRZEZDZON J, JACEWICZ D, SIELICKA A, CHMURZYNSKI L. TrAC-Trends Anal. Chem., 2019, 115:121-128.

    11. [11]

      NIELEN M W F. Mass Spectrom. Rev., 1999, 18(5):309-344.

    12. [12]

      METTERNICH J B, CZAR M F, MIRABELLI M F, BARTOLOMEO G L, ZOUBOULIS K C M, ZENOBI R.J. Am. Soc. Mass Spectrom., 2019, 30(11):2392-2397.

    13. [13]

      CHEN R, YALCIN T, WALLACE W E, GUTTMAN C M, LI L. J. Am. Soc. Mass Spectrom., 2001, 12(11):1186-1192.

    14. [14]

      BRANDT H, EHMANN T, OTTO M. Rapid Commun. Mass Spectrom., 2010, 24(16):2439-2444.

    15. [15]

      GABRIEL S J, STEINHOFF R F, PABST M, SCHWARZINGER C, ZENOBI R, PANNE U, WEIDNER S M. Rapid Commun. Mass Spectrom., 2015, 29(11):1039-1046.

    16. [16]

      TINTARU A, CHENDO C, PHAN T N T, ROLLET M, GIORDANO L, VIEL S, GIGMES D, CHARLES L. Anal. Chem., 2013, 85(11):5454-5462.

    17. [17]

      WU P F, TANG Y Y, CAO G D, LI J P, WANG S Q, CHANG X Y, DANG M, JIN H B, ZHENG C M, CAI Z W. Anal. Chem., 2020, 92(21):14346-14356.

    18. [18]

      JABER A J, WILKINS C L. J. Am. Soc. Mass Spectrom., 2005, 16(12):2009-2016.

    19. [19]

      GROLLIER K, VU N D, ONIDA K, AKHDAR A, NORSIC S, D'AGOSTO F, BOISSON C, DUGUET N. Adv. Synt. Catal., 2020, 362(8):1696-1705.

    20. [20]

      STAUDT B H, WAGNER J, VANA P. Macromolecules (Washington, DC, United States), 2018, 51(21):8469-8476.

    21. [21]

      MOSCATO B, LANDIS C. Chem. Commun., 2008, (44):5785-5787.

    22. [22]

      WALLACE W E, BLAIR W R. Int. J. Mass Spectrom., 2007, 263(1):82-87.

    23. [23]

      ALLGAIER J, MARTIN K, RAEDER H J, MUELLEN K. Macromolecules, 1999, 32(10):3190-3194.

    24. [24]

      KONA B, WEIDNER S M, FRIEDRICH J F. Int. J. Polym. Anal. Charact., 2005, 10(1-2):85-108.

    25. [25]

      YALCIN T, SCHRIEMER D C, LI L. J. Am. Soc. Mass Spectrom., 1997, 8(12):1220-1229.

    26. [26]

      BYRD H C M, LIN-GIBSON S, BENCHERIF S, VANDERHART D L, BEERS K L, BAUER B J, FANCONI B M, GUTTMAN C M, WALLACE W E. PMSE Preprints, 2003, 88:80-81.

    27. [27]

      YANG S H, HE J. Polym. Chem., 2016, 7(27):4506-4514.

    28. [28]

      STRAESSLER N A, LI P, PARRY S A, COLEMAN D W, KILLPACK M O, WRIGHT M E. J. Appl. Polym. Sci., 2012, 123(2):691-698.

    29. [29]

      QUIRK R P, GUO Y, WESDEMIOTIS C, ARNOULD M A. J. Polym. Sci., Part A:Polym. Chem., 2003,41(16):2435-2453.

    30. [30]

      ZHENG J, LIN Y C, LIU F, TAN H Y, WANG Y H, TANG T. Chem.-Eur. J., 2013, 19(2):541-548.

    31. [31]

      MACHA S F, LIMBACh P A, SAVICKAS P J. J. Am. Soc. Mass Spectrom., 2000, 11(8):731-737.

    32. [32]

      BELU A M, DESIMONE J M, LINTON R W, LANGE G W, FRIEDMAN R M. J. Am. Soc. Mass Spectrom., 1996, 7(1):11-24.

    33. [33]

      WYATT M F, STEIN B K, BRENTON A G. Anal. Chem., 2006, 78(1):199-206.

    34. [34]

      VASIL'EV Y V, KHVOSTENKO O G, STRELETSKII A V, BOLTALINA O V, KOTSIRIS S G, DREWELLO T. J. Phys. Chem. A, 2006, 110(18):5967-5972.

    35. [35]

      MACHA S F, LIMBACH P A, HANTON S D, OWENS K G. J. Am. Soc. Mass Spectrom., 2001, 12(6):732-743.

    36. [36]

      RASHIDEZADEH H, GUO B. J. Am. Soc. Mass Spectrom., 1998, 9(7):724-730.

    37. [37]

      WONG C K L, CHAN T W D. Rapid Commun. Mass Spectrom., 1997, 11(5):513-519.

    38. [38]

      CHOI S S, HA S H. Macromol. Res., 2008, 16(2):108-112.

    39. [39]

      LOU X W, DE WAAL B F M, MILROY L G, VAN DONGEN J L. J. Mass Spectrom., 2015, 50(5):766-770.

    40. [40]

      FUCHS B. J. Chromatogr. A, 2012, 1259:62-73.

    41. [41]

      KUCHERENKO E, KANATEVA A, PIROGOV A, KURGANOV A. J. Sep. Sci., 2019, 42(1):415-430.

    42. [42]

      MERNIE E G, TOLESA L D, LEE M J, TSENG M C, CHEN Y J. Anal. Chem., 2019, 91(18):11544-11552.

    43. [43]

      NAYAK T, MANDAL S M, NEOG K, GHOSH A K. Int. J. Pept. Res. Ther., 2018, 24(2):337-346.

    44. [44]

      LOPALCO P, VITALE R, CHO Y S, TOTARO P, CORCELLI A, LOBASSO S. Front. Physiol., 2019, 10:1344.

    45. [45]

      ESPARZA C, POLOVKOV N Y, TOPOLYAN A P, BORISOV R S, ZAIKIN V G. J.Chromatogr. A, 2020, 1626:461335.

    46. [46]

      FOUGERE L, SILVA D D, DESTANDAU E, ELFAKIR C. Phytochem. Anal., 2019, 30(2):218-225.

    47. [47]

      HLEBA L, CHAROUSOVA I, CISAROVA M, KOVACIK A, KORMANEC J, MEDO J, BOZIK M, JAVOREKOVA S. J. Environ. Sci. Health, Part A:Toxic/Hazard. Subst. Environ. Eng., 2018, 53(12):1083-1093.

    48. [48]

      JI H N, SATO N, NONIDEZ W K, MAYS J W. Polymer, 2002, 43(25):7119-7123.

    49. [49]

      WATANABE T, KAWASAKI H, KIMOTO T, ARAKAWA R. Rapid Commun. Mass Spectrom., 2007, 21(5):787-791.

    50. [50]

      LERICHE E D, HUBERT-ROUX M, GROSSEL M C, LANGE C M, AFONSO C, LOUTELIER-BOURHIS C. Anal. Chim. Acta, 2014, 808:144-150.

    51. [51]

      KOOIJMAN P C, KOK S J, WEUSTEN J J A M, HONING M. Anal. Chim. Acta, 2016, 919:1-10.

  • 加载中
    1. [1]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

Metrics
  • PDF Downloads(12)
  • Abstract views(715)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return