Citation: CAO Hou-Yong,  CAO Meng,  BI Yi,  YU Nai-Sen,  LANG Ming-Fei,  SUN Jing. Ni-CuO/ITO Electrode for Electrooxidation and Detection of Ethanol[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1722-1732. doi: 10.19756/j.issn.0253-3820.210565 shu

Ni-CuO/ITO Electrode for Electrooxidation and Detection of Ethanol

  • Corresponding author: YU Nai-Sen,  LANG Ming-Fei,  SUN Jing, 
  • Received Date: 13 June 2021
    Revised Date: 21 July 2021

    Fund Project: Supported by the Liaoning Province-Shenyang National Laboratory for Materials Science Joint Research and Development Fund (Nos.2019010274-JH3/301, 2019010281-JH3/301), the Natural Science Foundation of Liaoning Province, China(No.2021JH6/10500143) and the Open Fund Projects of Guangxi Key Laboratory of Precision Navigation Technology and Application (No.XLYC1807004).

  • Ni-CuO/ITO electrode was prepared by sequential electrodeposition of Ni and CuO onto indium tin oxide (ITO) substrate. Scanning electron microscopy (SEM) demonstrated uniform distribution of Ni-CuO nanoflowers on the ITO substrate. X-ray diffraction (XRD) characterization showed that the Ni-CuO was mainly composed of Ni, NiSO4 and CuO. The electrochemical catalysis of different electrodes for ethanol (100 mmol/L) oxidation was studied in alkaline solution (1 mol/L KOH). ITO and CuO/ITO electrodes had negligible electrochemical activity, while the Ni-CuO electrode had high electrochemical activity, exhibiting oxidative peak current density of 20.90 mA/cm2, 1.7 times as high as that of the Ni/ITO. Furthermore, the electrochemical responses of the Ni-CuO electrode at different scan rates (20-100 mV/s) and toward different concentrations (10-500 mmol/L) of ethanol were inspected. By investigating the relationship between the amount of Ni and CuO deposition and the electrochemical catalysis of ethanol, the highest catalytic activity was achieved with potentiostatic Ni deposition for 300 s and CuO deposition for two cyclic voltammetry (CV) cycles. The Ni-CuO/ITO electrode retained 54.39% of its initial oxidative peak current density over a 10000-s stability test by chronoamperometry, exhibiting high long-term stability. A linear relationship was obtained between the oxidative peak current densities of the Ni-CuO/ITO electrode and the ethanol concentrations ranging from 0.1 mmol/L to 15 mmol/L, with an ethanol detection sensitivity of 150 μA/(cm2 (mmol/L)), a detection limit of 0.047 μmol/L (S/N=3) and recoveries of 95.2%-104.1%. In addition, excellent anti-interference was found when NaCl, KCl, disodium hydrogen phosphate, sorbic acid, and citric acid were added as interference species during the ethanol detection. These results suggested that the Ni-CuO/ITO electrode had potential practical applications in detection of ethanol.
  • 加载中
    1. [1]

      ALIMUJIANG A, JIANG P. Energy Sustainable Dev., 2020, 55:181-189.

    2. [2]

    3. [3]

      WANG Z B, NING P, HU L H, NIE Q J, LIU Y G, ZHOU Y H, YANG J M. Renewable Energy, 2020,160:211-219.

    4. [4]

      RAHMANI K, HABIBI B. RSC Adv., 2019, 9(58):34050-34064.

    5. [5]

      DHARMALINGAM G, SIVASUBRAMANIAM R, PARTHIBAN S. J. Electron. Mater., 2020, 49(5):3009-3024.

    6. [6]

      WANG W, WANG Y H, LIU S J, YAHIA M, DONG Y J, LEI Z Q. Int. J. Hydrogen Energy, 2019, 44(21):10637-10645.

    7. [7]

      YE N, BAI Y X, JIANG Z, FANG T. Int. J. Hydrogen Energy, 2020, 45(56):32022-32038.

    8. [8]

      GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.

    9. [9]

      PIETA I S, RATHI A, PIETA P, NOWAKOWSKI R, HOLDYNSKI M, PISAREK M, KAMINSKA A, GAWANDE M B, ZBORIL R. Appl. Catal. B, 2019, 244:272-283.

    10. [10]

      MCCRORY C C L, JUNG S, FERRER I M, CHATMAN S M, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2015, 137(13):4347-4357.

    11. [11]

      MCCRORY C C L, JUNG S, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2013, 135(45):16977-16987.

    12. [12]

      SHENDE P, KASTURE P, GAUD R S. Artif. Cells Nanomed. Biotechnol., 2018, 46:413-422.

    13. [13]

      ZHU J L, WEN M Q, WEN W, DU D, ZHANG X H, WANG S F, LIN Y H. Biosens. Bioelectron., 2018, 120:175-187.

    14. [14]

      WANG S L, YANG X D, LIU Z, YANG D W, FENG L G. Nanoscale, 2020, 12(19):10827-10833.

    15. [15]

      YANG D W, YANG L T, ZHONG L, YU X, FENG L G. Electrochim. Acta, 2019, 295:524-531.

    16. [16]

      LI X G, NING S S, LIU X Y, SHANGGUAN E B, WU C K, LI J, WANG Z H, LI Q M. Ionics, 2019, 25(8):3775-3786.

    17. [17]

    18. [18]

      CAO M, CAO H Y, MENG W C, WANG Q X, BI Y, LIANG X X, YANG H B, ZHANG L, LANG M F, SUN J. Int. J. Hydrogen Energy, 2021, 46(56):28527-28536.

    19. [19]

      HAN M, WANG N, ZHANG B, XIA Y J, LI J, HAN J R, Yao K L, GAO C C, HE C N, LIU Y C, WANG Z M, SEIFITOKALDANI A, SUN X H, LIANG H Y. ACS Catal., 2020, 10(17):9725-9734.

    20. [20]

      LOTFI N, FARAHANI T S, YAGHOUBINEZHAD Y, DARBAND G B. Int. J. Hydrogen Energy, 2019, 44(26):13296-13309.

    21. [21]

      KOBAYASHI Y, CAI Z W, CHANG G, HE Y B, OYAMA M. ACS Appl. Energy Mater., 2019, 2(8):6023-6030.

    22. [22]

      SHARMA P, RADHAKRISHNAN S, KHIL M, KIM H, KIM B. J. Electroanal. Chem., 2018, 808:236-244.

    23. [23]

      SILVA L S R, MELO I G, MENESES C T, LOPEZ-SUAREZ F E, EGUILUZ K I B, SALAZAR-BANDA G R. J. Electroanal. Chem., 2020, 857:113754.

    24. [24]

      SOGANCI T, AYRANCI R, HARPUTLU E, OCAKOGLU K, ACET M, FARLE M, UNLU C G, AK M. Sens. Actuators, B, 2018, 273:1501-1507.

    25. [25]

      AMIN S, TAHIRA A, SOLANGI A R, MAZZARO R, IBUPOTO Z H, FATIMA A, VOMIERO A. Electroanalysis, 2020, 32(5):1052-1059.

    26. [26]

      MUKHERJEE P, SARATHI P R, MANDALB K, BHATTACHARJEEB D, DASGUPTA S, KUMAR S, BHATTACHARYA N. Electrochim. Acta, 2015, 154:447-455.

    27. [27]

      ZHENG W R, LI Y, LEE L Y S. Electrochim. Acta, 2019, 308:9-19.

    28. [28]

      LONG Y Y, ZHAN J, HUANG J Y. Energy Mater., 2019, 71(4):1485-1491.

    29. [29]

      FU Y Y, WANG T, SU W, YU Y A, HU J B. Electrochim. Acta, 2015, 174:199-206.

    30. [30]

      GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.

    31. [31]

      LIN Y C, WEI W C J. Int. J. Hydrogen Energy, 2020, 45(46):24253-24262.

    32. [32]

      PASSOS A R, PULCINELLI S H, SANTILLI C V, BRIOIS V. Catal. Today, 2019, 336:122-130.

    33. [33]

      VICENTE N, HARO M, GARCIA-BELMONTE G. Chem. Commun., 2018, 54(9):1025-1040.

    34. [34]

      GUO F, YE K, DU M M, HUANG X M, CHENG K, WANG G L, CAO D X. Electrochim. Acta, 2016, 210:474-482.

    35. [35]

      WU X Q, LEE H L, LIU H Z, LU L J, WU X J, SUN L C. Int. J. Hydrogen Energy, 2020, 45(41):21354-21363.

    36. [36]

      WU K L, JIANG B B, CAI Y M, WEI X W, LI X Z, CHEONG W C. ChemElectroChem, 2017, 4(6):1419-1428.

    37. [37]

      AMINI N, MALEKI A. J. Electroanal. Chem., 2020, 877:114463.

    38. [38]

      BILGI M, SAHIN E, AYRANCI E. J. Electroanal. Chem., 2018, 813:67-74.

    39. [39]

      NAHIRNY E P, BERGAMINI M F, MARCOLINO-JUNIOR L H. J. Electroanal. Chem., 2020, 877:114659.

    40. [40]

      TETTAMANTI C S, RAMIREZ M L, GUTIERREZ F A, BERCOFF P G, RIVAS G A, RODRIGUEZ M C. Microchem. J., 2018, 142:159-166.

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(10)
  • Abstract views(663)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return