Citation: CAO Hou-Yong, CAO Meng, BI Yi, YU Nai-Sen, LANG Ming-Fei, SUN Jing. Ni-CuO/ITO Electrode for Electrooxidation and Detection of Ethanol[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1722-1732. doi: 10.19756/j.issn.0253-3820.210565
-
Ni-CuO/ITO electrode was prepared by sequential electrodeposition of Ni and CuO onto indium tin oxide (ITO) substrate. Scanning electron microscopy (SEM) demonstrated uniform distribution of Ni-CuO nanoflowers on the ITO substrate. X-ray diffraction (XRD) characterization showed that the Ni-CuO was mainly composed of Ni, NiSO4 and CuO. The electrochemical catalysis of different electrodes for ethanol (100 mmol/L) oxidation was studied in alkaline solution (1 mol/L KOH). ITO and CuO/ITO electrodes had negligible electrochemical activity, while the Ni-CuO electrode had high electrochemical activity, exhibiting oxidative peak current density of 20.90 mA/cm2, 1.7 times as high as that of the Ni/ITO. Furthermore, the electrochemical responses of the Ni-CuO electrode at different scan rates (20-100 mV/s) and toward different concentrations (10-500 mmol/L) of ethanol were inspected. By investigating the relationship between the amount of Ni and CuO deposition and the electrochemical catalysis of ethanol, the highest catalytic activity was achieved with potentiostatic Ni deposition for 300 s and CuO deposition for two cyclic voltammetry (CV) cycles. The Ni-CuO/ITO electrode retained 54.39% of its initial oxidative peak current density over a 10000-s stability test by chronoamperometry, exhibiting high long-term stability. A linear relationship was obtained between the oxidative peak current densities of the Ni-CuO/ITO electrode and the ethanol concentrations ranging from 0.1 mmol/L to 15 mmol/L, with an ethanol detection sensitivity of 150 μA/(cm2 (mmol/L)), a detection limit of 0.047 μmol/L (S/N=3) and recoveries of 95.2%-104.1%. In addition, excellent anti-interference was found when NaCl, KCl, disodium hydrogen phosphate, sorbic acid, and citric acid were added as interference species during the ethanol detection. These results suggested that the Ni-CuO/ITO electrode had potential practical applications in detection of ethanol.
-
-
[1]
ALIMUJIANG A, JIANG P. Energy Sustainable Dev., 2020, 55:181-189.
-
[2]
-
[3]
WANG Z B, NING P, HU L H, NIE Q J, LIU Y G, ZHOU Y H, YANG J M. Renewable Energy, 2020,160:211-219.
-
[4]
RAHMANI K, HABIBI B. RSC Adv., 2019, 9(58):34050-34064.
-
[5]
DHARMALINGAM G, SIVASUBRAMANIAM R, PARTHIBAN S. J. Electron. Mater., 2020, 49(5):3009-3024.
-
[6]
WANG W, WANG Y H, LIU S J, YAHIA M, DONG Y J, LEI Z Q. Int. J. Hydrogen Energy, 2019, 44(21):10637-10645.
-
[7]
YE N, BAI Y X, JIANG Z, FANG T. Int. J. Hydrogen Energy, 2020, 45(56):32022-32038.
-
[8]
GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.
-
[9]
PIETA I S, RATHI A, PIETA P, NOWAKOWSKI R, HOLDYNSKI M, PISAREK M, KAMINSKA A, GAWANDE M B, ZBORIL R. Appl. Catal. B, 2019, 244:272-283.
-
[10]
MCCRORY C C L, JUNG S, FERRER I M, CHATMAN S M, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2015, 137(13):4347-4357.
-
[11]
MCCRORY C C L, JUNG S, PETERS J C, JARAMILLO T F. J. Am. Chem. Soc., 2013, 135(45):16977-16987.
-
[12]
SHENDE P, KASTURE P, GAUD R S. Artif. Cells Nanomed. Biotechnol., 2018, 46:413-422.
-
[13]
ZHU J L, WEN M Q, WEN W, DU D, ZHANG X H, WANG S F, LIN Y H. Biosens. Bioelectron., 2018, 120:175-187.
-
[14]
WANG S L, YANG X D, LIU Z, YANG D W, FENG L G. Nanoscale, 2020, 12(19):10827-10833.
-
[15]
YANG D W, YANG L T, ZHONG L, YU X, FENG L G. Electrochim. Acta, 2019, 295:524-531.
-
[16]
LI X G, NING S S, LIU X Y, SHANGGUAN E B, WU C K, LI J, WANG Z H, LI Q M. Ionics, 2019, 25(8):3775-3786.
-
[17]
-
[18]
CAO M, CAO H Y, MENG W C, WANG Q X, BI Y, LIANG X X, YANG H B, ZHANG L, LANG M F, SUN J. Int. J. Hydrogen Energy, 2021, 46(56):28527-28536.
-
[19]
HAN M, WANG N, ZHANG B, XIA Y J, LI J, HAN J R, Yao K L, GAO C C, HE C N, LIU Y C, WANG Z M, SEIFITOKALDANI A, SUN X H, LIANG H Y. ACS Catal., 2020, 10(17):9725-9734.
-
[20]
LOTFI N, FARAHANI T S, YAGHOUBINEZHAD Y, DARBAND G B. Int. J. Hydrogen Energy, 2019, 44(26):13296-13309.
-
[21]
KOBAYASHI Y, CAI Z W, CHANG G, HE Y B, OYAMA M. ACS Appl. Energy Mater., 2019, 2(8):6023-6030.
-
[22]
SHARMA P, RADHAKRISHNAN S, KHIL M, KIM H, KIM B. J. Electroanal. Chem., 2018, 808:236-244.
-
[23]
SILVA L S R, MELO I G, MENESES C T, LOPEZ-SUAREZ F E, EGUILUZ K I B, SALAZAR-BANDA G R. J. Electroanal. Chem., 2020, 857:113754.
-
[24]
SOGANCI T, AYRANCI R, HARPUTLU E, OCAKOGLU K, ACET M, FARLE M, UNLU C G, AK M. Sens. Actuators, B, 2018, 273:1501-1507.
-
[25]
AMIN S, TAHIRA A, SOLANGI A R, MAZZARO R, IBUPOTO Z H, FATIMA A, VOMIERO A. Electroanalysis, 2020, 32(5):1052-1059.
-
[26]
MUKHERJEE P, SARATHI P R, MANDALB K, BHATTACHARJEEB D, DASGUPTA S, KUMAR S, BHATTACHARYA N. Electrochim. Acta, 2015, 154:447-455.
-
[27]
ZHENG W R, LI Y, LEE L Y S. Electrochim. Acta, 2019, 308:9-19.
-
[28]
LONG Y Y, ZHAN J, HUANG J Y. Energy Mater., 2019, 71(4):1485-1491.
-
[29]
FU Y Y, WANG T, SU W, YU Y A, HU J B. Electrochim. Acta, 2015, 174:199-206.
-
[30]
GUCHHAIT S K, PAUL S. J. Electrochem. Sci. Technol., 2016, 7(3):190-198.
-
[31]
LIN Y C, WEI W C J. Int. J. Hydrogen Energy, 2020, 45(46):24253-24262.
-
[32]
PASSOS A R, PULCINELLI S H, SANTILLI C V, BRIOIS V. Catal. Today, 2019, 336:122-130.
-
[33]
VICENTE N, HARO M, GARCIA-BELMONTE G. Chem. Commun., 2018, 54(9):1025-1040.
-
[34]
GUO F, YE K, DU M M, HUANG X M, CHENG K, WANG G L, CAO D X. Electrochim. Acta, 2016, 210:474-482.
-
[35]
WU X Q, LEE H L, LIU H Z, LU L J, WU X J, SUN L C. Int. J. Hydrogen Energy, 2020, 45(41):21354-21363.
-
[36]
WU K L, JIANG B B, CAI Y M, WEI X W, LI X Z, CHEONG W C. ChemElectroChem, 2017, 4(6):1419-1428.
-
[37]
AMINI N, MALEKI A. J. Electroanal. Chem., 2020, 877:114463.
-
[38]
BILGI M, SAHIN E, AYRANCI E. J. Electroanal. Chem., 2018, 813:67-74.
-
[39]
NAHIRNY E P, BERGAMINI M F, MARCOLINO-JUNIOR L H. J. Electroanal. Chem., 2020, 877:114659.
-
[40]
TETTAMANTI C S, RAMIREZ M L, GUTIERREZ F A, BERCOFF P G, RIVAS G A, RODRIGUEZ M C. Microchem. J., 2018, 142:159-166.
-
[1]
-
-
[1]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[2]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[3]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[4]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[7]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[8]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[9]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[10]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[11]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[12]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[13]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[14]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[15]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[16]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[17]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[19]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[20]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(664)
- HTML views(87)