Citation: NI Long,  WANG Meng,  ZHU Zhong-Xu,  LI Ming,  YUAN Chuan-Jun,  WU Jian. Background-Free Development of Latent Fingerprints Using SrAl2O4: Eu,Dy,La Afterglow Luminescence Materials[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 103-111. doi: 10.19756/j.issn.0253-3820.210563 shu

Background-Free Development of Latent Fingerprints Using SrAl2O4: Eu,Dy,La Afterglow Luminescence Materials

  • Corresponding author: WANG Meng,  WU Jian, 
  • Received Date: 11 June 2021
    Revised Date: 3 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21205139, 21802169), the Scientific Research Fund Project from Educational Department of Liaoning Province, China (No.LJKZ0068), Liaoning BaiQianWan Talents Program in 2020, and the Innovation Ability Enhancement Project of Postraduates from Criminal Investigation Police University of China (No.2021YCYB32).

  • SrAl2O4:Eu,Dy,La afterglow luminescence materials were prepared via a one-step combustion approach at a relatively low temperature by using aluminum nitrate, strontium nitrate and rare earth nitrate as oxidants, carbamide as reductants and fuels, and boric acid as fluxing agents. The preparation conditions including furnace temperature, amount of carbamide, amount of boric acid, and doping concentrations of La3+ ions were optimized. Then, the micromorphology, crystal structure, ultraviolet absorption property, and luminescence performance of as-prepared materials were characterized by scanning electron microscopy, X-ray diffraction pattern, ultraviolet-visible spectrum, and fluorescence emission spectrum, respectively. The prepared materials were polyhedral in shape with micron size, and monoclinal in phase with good crystallinity, which could emit strong luminescence at 514 nm under excitation of 252 or 334 nm ultraviolet light. After excited with 365 nm long-wavelength ultraviolet light for 30 s and then removing the excitation source, these materials could maintain strong green emission in dark field. Finally, the afterglow luminescence powders were applied for background-free development of latent fingerprints on various smooth substrates. The contrast, sensitivity and selectivity in fingerprint development were discussed in detail. After enhancing by afterglow luminescence treatment, the contrast between the developing signal and background noise were strong, all the detailed features of papillary ridges were obvious, and the adsorption between the developing powders and papillary ridges were specific, showing prominent advantages such as strong contrast, high sensitivity and good selectivity. Experimental results showed that, the method proposed here based on afterglow luminescence effect could achieve a high performance in background-free development of latent fingerprints on common substrates with smooth surface, especially on substrates with complex colors as well as strong fluorescence, exhibiting easy operability, high efficiency, and wide applicability.
  • 加载中
    1. [1]

      CHAMPOD C, LENNAR C, MARGOT P, STOILOVIC M. Fingerprints and Other Ridge Skin Impressions. Florida:CRC Press, 2004.

    2. [2]

      XU L R, ZHANG C Z, HE Y Y, SU B. Sci. China Chem., 2015, 58(7):1090-1096.

    3. [3]

      SU B. Anal. Bioanal. Chem., 2016, 408(11):2781-2791.

    4. [4]

      WANG M, ZHU Y, MAO C B. Langmuir, 2015, 31(25):7084-7090.

    5. [5]

      WANG M, LI M, YU A Y, YANG M Y, MAO C B. Adv. Funct. Mater., 2017, 27(14):1606243.

    6. [6]

      WANG Y Q, WANG J, MA Q Q, LI Z H, YUAN Q. Nano Res., 2018, 11(10):5499-5518.

    7. [7]

    8. [8]

      WANG M, SHEN D P, ZHU Z X, LI M, YUAN C J, ZHU Y, WU J, MAO C B. Talanta, 2021, 231:122138.

    9. [9]

      GAO F, LV C F, HAN J X, LI X Y, WANG Q, ZHANG J, CHEN C, LI Q, SUN X F, ZHENG J C, BAO L R, LI X. J. Phys. Chem. C, 2011, 115(44):21574-21583.

    10. [10]

      GAO F, HAN J X, ZHANG J, LI Q, SUN X F, ZHENG J C, BAO L R, LI X, LIU Z L. Nanotechnology, 2011, 22(7):075705.

    11. [11]

      XU C Y, ZHOU R H, HE W W, WU L, WU P, HOU X D. Anal. Chem., 2014, 86(7):3279-3283.

    12. [12]

    13. [13]

      WANG M, LI M, YU A Y, WU J, MAO C B. ACS Appl. Mater. Interfaces, 2015, 7(51):28110-28115.

    14. [14]

      CHEN C L, YU Y, LI C G, LIU D, HUANG H, LIANG C, LOU Y, HAN Y, SHI Z, FENG S H. Small, 2017, 13(48):1702305.

    15. [15]

      PENG D, WU X, LIU X, HUANG M J, WANG D, LIU R L. ACS Appl. Mater. Interfaces, 2018, 10(38):32859-32866.

    16. [16]

      FERNANDES D, KRYSMANN M J, KELARAKIS A. Chem. Commun., 2015, 51(23):4902-4905.

    17. [17]

      CHEN J, WEI J S, ZHANG P, NIU X Q, ZHAO W, ZHU Z Y, DING H, XIONG H M. ACS Appl. Mater. Interfaces, 2017, 9(22):18429-18433.

    18. [18]

      PENG D, LIU X, HUANG M J, WANG D, LIU R L. Dalton Trans., 2018, 47(16):5823-5830.

    19. [19]

      GUO L, WANG M, CAO D P. Small, 2018, 14(17):1703822.

    20. [20]

      LIANG K, CARBONELL C, STYLES M J, RICCO R, CUI J W, RICHARDSON J J, MASPOCH D, CARUSO F, FALCARO P. Adv. Mater., 2015, 27(45):7293-7298.

    21. [21]

      VENKATACHALAIAH K N, NAGABHUSHANA H, BASAVARAJ R B, DARSHAN G P, PRASAD B D, SHARMA S C. J. Rare Earths, 2018, 36(9):954-964.

    22. [22]

      WANG J, WEI T, LI X Y, ZHANG B H, WANG J X, HUANG C, YUAN Q. Angew. Chem., Int. Ed., 2014, 53(6):1616-1620.

    23. [23]

      WANG M, LI M, YANG M Y, ZHANG X M, YU A Y, ZHU Y, QIU P H, MAO C B. Nano Res., 2015, 8(6):1800-1810.

    24. [24]

      WANG M. RSC Adv., 2016, 6(43):36264-36268.

    25. [25]

      WANG M, SHEN D P, ZHU Z X, JU J S, WU J, ZHU Y, LI M, YUAN C J, MAO C B. Mater. Today Adv., 2020, 8:100113.

    26. [26]

    27. [27]

  • 加载中
    1. [1]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    18. [18]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    19. [19]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    20. [20]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

Metrics
  • PDF Downloads(7)
  • Abstract views(766)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return