Citation: LU Wen-Bo,  BAO Can-Can,  WEI Ming,  NIU Qiang-Qiang,  BAI Li-Wei,  CAO Xiao-Wei,  JIA Jian-Feng. An Electrochemical Immunosensor Based on Gold Nanoparticles Decorated Cobalt Boride Nanosheet Arrays for Detection of Human Chorionic Gonadotropin[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2075-2085. doi: 10.19756/j.issn.0253-3820.210543 shu

An Electrochemical Immunosensor Based on Gold Nanoparticles Decorated Cobalt Boride Nanosheet Arrays for Detection of Human Chorionic Gonadotropin

  • Corresponding author: LU Wen-Bo, luwb@sxnu.edu.cn
  • Received Date: 3 June 2021
    Revised Date: 30 July 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21705103), the Applied Basic Research Project of Shanxi Province, China (No.201801D221392), the Scientific and Technological Innovation Projects in Shanxi Universities (No.2019L0460) and the 1331 Engineering of Shanxi Province, China.

  • Human chorionic gonadotropin (hCG) is a marker of early pregnancy and diseases such as ovarian cancer. Therefore, the rapid, accurate and real-time determination of hCG is of great significance. In this work, an electrochemical immunosensor for detection of hCG based on three-dimensional Au nanoparticles anchored on cobalt boride (AuNPs/CoB) nanosheet array electrode was developed. AuNPs/CoB nanosheet arrays were synthesized by an electrodeposition method, which was first explored for immunoassay of hCG. AuNPs/CoB nanosheeet arrays could enhance the performance of electrocatalytic reduction of thionine to amplify signal. Thionine (Thi) was electro-polymerized on the AuNPs/CoB nanosheet arrays, thus forming Thi/AuNPs/CoB nanosheet array-electrode. HCG antibody (anti-hCG) could be successfully attached to the Thi/AuNPs/Co-B nanosheet array-electrode by Au-N bond of AuNPs or the amino group of thionine, which caused an obvious decrease in the catalytic current due to the insulated anti-hCG. The current signal decreased linearly with the increase of hCG concentration due to the formation of antibody-antigen immunocomplex. The immunosensor possessed a good linearity with logarithm of hCG concentration in the range of 10-5.0×104 pg/mL, and the detection limit was 2.80 pg/mL (S/N=3). The immunosensor based on Thi/AuNPs/Co-B nanosheet arrays could exactly detect hCG in human serum samples, providing a simple and reliable evaluation method for the clinical diagnosis of early pregnancy and gynecological diseases.
  • 加载中
    1. [1]

      CHETCUTI A F, WONG D K Y, STUART M C. Anal. Chem., 1999, 71(18):4088-4094.

    2. [2]

      XIA N, CHEN Z H, LIU Y D, REN H Z, LIU L. Sens. Actuators, B, 2017, 243:784-791.

    3. [3]

      KICMAN A T, PARKIN M C, ILES R K. Mol. Cell. Endocrinol., 2007, 260-262:212-227.

    4. [4]

      HOU J Y, LIU T C, REN Z Q, CHEN M J, LIN G F, WU Y S. Analyst, 2013, 138(13):3697-3704.

    5. [5]

      LONGHI B, CHICHEHIAN B, CAUSSE A, CARAUX J. J. Immunol. Methods, 1986, 92(1):89-95.

    6. [6]

      YAN X, HUANG Z B, HE M, LIAO X M, ZHANG C M, YIN G F, GU J W. Colloids Surf. B, 2012, 89:86-92.

    7. [7]

      WEN G Q, LIANG X J, LIU Q Y, LIANG A H, JIANG Z L. Biosens. Bioelectron., 2016, 85:450-456.

    8. [8]

      YANG G M, CHANG Y B, YANG H, TAN L, WU Z S, LU X X, YANG Y H. Anal. Chim. Acta, 2009, 644(1):72-77.

    9. [9]

      WEI M, LU W B, ZHU M, ZHANG R, HU W L, CAO X W, JIA J F, WU H S. J. Mater. Sci., 2021, 56(10):6401-6410.

    10. [10]

      WEI M, QIAO Y X, ZHAO H T, LIANG J, LI T S, LUO Y L, LU S Y, SHI X F, LU W B, SUN X P. Chem. Commun., 2020, 56(93):14553-14569.

    11. [11]

      BARMAN S C, SHARIFUZZAMAN M, ZAHED M A, PARK C, YOON S H, ZHANG S, KIM H, YOON H, PARK J Y. Biosens. Bioelectron., 2021, 186:113287.

    12. [12]

      CHEN S Z, XU L, SHENG K, ZHOU Q Q, DONG B, BAI X, LU G Y, SONG H W. Sens. Actuators, B, 2021, 336:129748.

    13. [13]

      LIU C J, YANG W, MIN X, ZHANG D C, FU X H, DING S J, XU W C. Sens. Actuators, B, 2021, 334:129585.

    14. [14]

      FENG J J, LIANG X Y, MA Z F. Biosens. Bioelectron., 2021, 175:112853.

    15. [15]

    16. [16]

    17. [17]

      MASA J, WEIDE P, PEETERS D, SINEV I, XIA W, SUN Z Y, SOMSEN C, MUHLER M, SCHUHMANN W. Adv. Energy Mater., 2016, 6(6):1502313.

    18. [18]

      JIANG W J, NIU S, TANG T, ZHANG Q H, LIU X Z, ZHANG Y, CHEN Y Y, LI J H, GU L, WAN L J,HU J S. Angew. Chem., Int. Ed., 2017, 56(23):6572-6577.

    19. [19]

      PARK H, ENCINAS A, SCHEIFERS J P, ZHANG Y M, FOKWA B P T. Angew. Chem., Int. Ed., 2017, 56(20):5575-5578.

    20. [20]

      WANG Z Q, XIANG R, SHI X F, ASIRI A M, WANG L, LI X N, SUN X P, ZHANG Q J, WANG H J. J. Mater. Chem. A, 2018, 6:3864-3868.

    21. [21]

      LU W B, LIU T T, XIE L S, TANG C, LIU D, HAO S, QU F L, DU G, MA Y J, ASIRI A M, SUN X P. Small, 2017, 13(32):1700805.

    22. [22]

      GUPTA S, PATEL N, MIOTELLO A, KOTHARI D C. J. Power Sources, 2015, 279:620-625.

    23. [23]

      DING Y H, ZHANG X M, LIU X X, GUO R. Langmuir, 2006, 22(5):2292-2298.

    24. [24]

      XU Y F, ZHANG R R, QIAN J, WANG H Y, WANG P, YE S L. Mater. Des., 2018, 149:81-86.

    25. [25]

      LI X Y, LI J N, SHI Y, ZHANG M M. FAN S Y, YIN Z F, QIN M C, LIAN T T, LI X R. J. Colloid Interface Sci., 2018, 528:45-52.

    26. [26]

      BIESINGR M C, PAYNE B P, GROSVENOR A P, LAU L W M, GERSON A R, SMART R S C. Appl. Surf. Sci., 2011, 257(7):2717-2730.

    27. [27]

      GAO Q, CUI X Q, YANG F, MA Y, YANG X R. Biosens. Bioelectron., 2003, 19(3):277-282.

    28. [28]

      SUN Z M, FU H Y, DENG L, WANG J. Anal. Chim. Acta, 2013, 761:84-91.

    29. [29]

      WANG H J, GUO W J, PEI M S. New J. Chem., 2017, 41(20):11600-11606.

    30. [30]

      LI R, WU D, LI H, XU C X, WANG H, ZHAO Y F, CAI Y Y, WEI Q, DU B. Anal. Biochem., 2011, 414(2):196-201.

    31. [31]

      WANG W G, LI J M, DONG C Z, LI Y F, KOU Q Y, YAN J W, ZHANG L. Anal. Chim. Acta, 2018, 1042:116-124.

    32. [32]

      LEI J Q, JING T, ZHOU T T, ZHOU Y S, WU W, MEI S R, ZHOU Y K. Biosens. Bioelectron., 2014, 54:72-77.

    33. [33]

      WU D, ZHANG Y, SHI L, CAI Y Y, MA H M, DU B, WEI Q. Electroanalysis, 2013, 25(2):427-432.

    34. [34]

      VALIPOUR A, ROUSHANI M. Anal. Bioanal. Chem. Res., 2017, 4(2):341-352.

    35. [35]

      WEI Q, LI R, DU B, WU D, HAN Y Y, CAI Y Y, ZHAO Y F, XIN X D, LI H, YANG M H. Sens. Actuators, B, 2011, 153(1):256-260.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    8. [8]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    9. [9]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    18. [18]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

Metrics
  • PDF Downloads(14)
  • Abstract views(867)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return