Citation: FAN Jia-Min,  GONG Qiao-Juan,  GONG Peng-Ni,  ZHAO Xiao-Yan. Preparation and Properties of CoNi2S4 for Supercapacitor Electrode Material[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(1): 119-126. doi: 10.19756/j.issn.0253-3820.210524 shu

Preparation and Properties of CoNi2S4 for Supercapacitor Electrode Material

  • Corresponding author: GONG Qiao-Juan, gqjuan@163.com
  • Received Date: 25 May 2021
    Revised Date: 11 October 2021

    Fund Project: Supported by the Key Research and Development Program of Shanxi Province, China (No.201803D121030).

  • As a new type of energy storage device, supercapacitors have been extensively studied due to their advantages such as high power density and long cycle life. Metal sulfide materials are often used as electrode materials for supercapacitors due to their high conductivity and good electrochemical performance. In this study, a one-step solvothermal method was used to prepare a CoNi2S4 material similar to the surface of broccoli with ethylene glycol as the solvent. The material had a synergistic effect of multiple ions during the Faraday redox reaction. The three-electrode test results showed that the material had good cycle stability and excellent charge and discharge performance. The specific capacitance was 2537 F/g at a current density of 1 A/g, and the specific capacitance retention rate was 88.2% after 5000 cycles. Compared with CoS, it had larger specific capacitance, specific surface area and better electrochemical performance. The assembled CoNi2S4//AC asymmetric supercapacitor had an energy density of 52.3 W/kg at a power density of 375 Wh/kg and a specific capacitance retention rate of 75.8% after 5000 cycles. The prepared CoNi2S4 was an excellent electrode material for supercapacitors.
  • 加载中
    1. [1]

      XU X J, LIU J, LIU Z B, SHEN J D, HU R Z, LIU J W, OUYANG L Z, ZHANG L, ZHU M. ACS Nano, 2017, 11(9):9033-9040.

    2. [2]

      MIAO P H, HE J, SANG Z Y, ZHANG F R, GUO J D, SU D, YAN X, LI X L, JI H M. J. Alloys Compd., 2018, 732:613-623.

    3. [3]

      LOKHANDE V C, LOKHANDE A C, LOKHANDE C D, KIM J H, JI T. J. Alloys Compd., 2016, 682:381-403.

    4. [4]

      WANG Z L. Nano Today, 2010, 5(6):540-552.

    5. [5]

      GONZÁLEZ A, GOIKOLEA E, BARRENA J A, MYSYK R. Renewable Sustainable Energy Rev., 2016, 58:1189-1206.

    6. [6]

      LIANG R B, DU Y Q, XIAO P, CHENG J Y, YUAN S J, CHEN Y L, YUAN J, CHEN J W. Nanomaterials (Basel), 2021, 11(5):1248.

    7. [7]

      TIWARI A P, MUKHIYA T, MUTHURASU A, CHHETRI K, LEE M, DAHAL B, LOHANI P C, KIM H Y. Electrochem., 2021, 2(2):236-250.

    8. [8]

      WANG S F, XIAO Z Y, ZHAI S R, WANG H S, CAI W J, QIN L F, HUANG J Y, ZHAO D, LI Z C, AN Q D. J. Mater. Chem. A, 2019, 29:17345-17356.

    9. [9]

      TANG Q, ZHOU Y, MA L, GAN M Y. J. Solid State Chem., 2019, 269:175-183.

    10. [10]

    11. [11]

      WEI C Z, RU Q L, KANG X T, HOU H Y, CHENG C, ZHANG D J. Appl. Surf. Sci., 2018, 435:993-1001.

    12. [12]

      SUN P, LIANG J C, CHEN G Y, LI Y H, ZHOU K Y, LIU J, ZHANG W Z, NIU F, ZHANG W X. Rare Met. Mater. Eng., 2018, 47(5):1359-1364.

    13. [13]

      KUMAR M, JEONG D I, SARWAR N, YOON D H. Ceram. Int., 2021, 47(12):16852-16860.

    14. [14]

      YANG J, YU C, FAN X M, LIANG S X, LI S F, HUANG H W, LING Z, HAO C, QIU J S. Energy Environ. Sci., 2016, 9(4):1299-1307.

    15. [15]

      LIU P, SUI Y W, WEI F X, QI J Q, MENG Q K, REN Y J, HE Y Z. Nano, 2019, 14(7):1950088.

    16. [16]

      LI Z P, ZHAO D, XU C Y, NING J Q, ZHONG Y J, ZHANG Z Y, WANG Y J, HU Y. Electrochim. Acta, 2018, 278:33-41.

    17. [17]

      CAO X, HE J, LI H, KANG L P, HE X X, SUN J, JIANG R B, XU H, LEI Z B, LIU Z H. Small, 2018,14(27):1800998.

    18. [18]

      LIANG Y X, GONG Q J, SUN X L, XU N N, GONG P N, QIAO J L. Electrochim. Acta, 2020, 342:136108-136118.

    19. [19]

      DU F, SHI L, ZHANG Y T, LI T, WANG J L, WEN G H, ALSAEDI A, HAYAT T, ZHOU Y, ZOU Z G. Appl. Catal., B, 2019, 253:246-252.

    20. [20]

      RAJESHJ A, PARK J H, VINH QUY V H, KWON J M, CHAE J, KANG S H, KIM H, AHN K S. J. Ind. Eng. Chem., 2018, 63:73-83.

    21. [21]

      HUNG T F, YIN Z W, BETZLER S B, ZHENG W J, YANG J, ZHENG H. Chem. Eng. J., 2019, 367:115-122.

    22. [22]

    23. [23]

      CAO X, HE J, LI H, KANG L P, HE X X, SUN J, JIANG R B, XU H, LEI Z B, LIU Z H. Small, 2018,14(27):1800998.

    24. [24]

      GAO Z Y,CHEN C, CHANG J L, CHEN L M, WANG P Y, WU D P, XU F, GUO Y M, JIANG K. Electrochim. Acta, 2018, 281:394-404.

    25. [25]

      YANG Y Y, ZHANG Y, ZHU C M, XIE Y D, LV L W, CHEN W L, HE Y Y, HU Z G. J. Alloys Compd., 2020, 823:153885

    26. [26]

      ZHAO X Y, MA Q X, TAO K, HAN L. ACS Appl. Energy Mater., 2021, 4(4):4199-4207.

    27. [27]

      TANG J H, SHEN J F, LI N, YE M X. Ceram. Int., 2015, 41(5):6203-6211.

    28. [28]

      LI R, WANG S L, HUANG Z C, LU F X, HE T B. J. Power Sources, 2016, 312:156-164.

    29. [29]

      XU R, LIN J M, WU J H, HUANG M L, FAN L Q, HE X, WANG Y T, XU Z D. Appl. Surf. Sci., 2017, 422:597-606.

    30. [30]

      YAN Y Q, DING S X, ZHOU X Y, HU Q, YI F, ZHENG Q J, LIN D M, WEI X J. J. Alloys Compd., 2021, 867:158941.

    31. [31]

      CHEN Q D, MIAO J K, QUAN L, CAI D P, ZHAN H B. Nanoscale, 2018, 10(8):4051-4060.

    32. [32]

      MA X, ZHANG L, XU G C, ZHANG C Y, SONG H J, HE Y T, ZHANG C, JIA D Z. Chem. Eng. J., 2017, 320:22-28.

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    6. [6]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    16. [16]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(14)
  • Abstract views(585)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return